TY - JOUR
T1 - SDSS-IV MaStar
T2 - data-driven parameter derivation for the MaStar Stellar Library
AU - Imig, Julie
AU - Holtzman, Jon A.
AU - Yan, Renbin
AU - Lazarz, Daniel
AU - Chen, Yanping
AU - Hill, Lewis
AU - Thomas, Daniel
AU - Maraston, Claudia
AU - Prescott, Moire M. K.
AU - Stringfellow, Guy S.
AU - Bizyaev, Dmitry
AU - Beaton, Rachael L.
AU - Drory, Niv
N1 - Publisher Copyright:
© 2022. The Author(s). Published by the American Astronomical Society..
PY - 2022/1/11
Y1 - 2022/1/11
N2 - The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) Stellar Library (MaStar) is a large collection of high-quality empirical stellar spectra designed to cover all spectral types and ideal for use in the stellar population analysis of galaxies observed in the MaNGA survey. The library contains 59,266 spectra of 24,130 unique stars with spectral resolution R ∼ 1800 and covering a wavelength range of 3622–10,354 Å. In this work, we derive five physical parameters for each spectrum in the library: effective temperature (Teff), surface gravity (log g), metallicity ([Fe/H]), microturbulent velocity (log(vmicro)), and alpha-element abundance ([α/Fe]). These parameters are derived with a flexible data-driven algorithm that uses a neural network model. We train a neural network using the subset of 1675 MaStar targets that have also been observed in the Apache Point Observatory Galactic Evolution Experiment (APOGEE), adopting the independently-derived APOGEE Stellar Parameter and Chemical Abundance Pipeline parameters for this reference set. For the regions of parameter space not well represented by the APOGEE training set (7000 ≤ T ≤ 30,000 K), we supplement with theoretical model spectra. We present our derived parameters along with an analysis of the uncertainties and comparisons to other analyses from the literature.
AB - The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) Stellar Library (MaStar) is a large collection of high-quality empirical stellar spectra designed to cover all spectral types and ideal for use in the stellar population analysis of galaxies observed in the MaNGA survey. The library contains 59,266 spectra of 24,130 unique stars with spectral resolution R ∼ 1800 and covering a wavelength range of 3622–10,354 Å. In this work, we derive five physical parameters for each spectrum in the library: effective temperature (Teff), surface gravity (log g), metallicity ([Fe/H]), microturbulent velocity (log(vmicro)), and alpha-element abundance ([α/Fe]). These parameters are derived with a flexible data-driven algorithm that uses a neural network model. We train a neural network using the subset of 1675 MaStar targets that have also been observed in the Apache Point Observatory Galactic Evolution Experiment (APOGEE), adopting the independently-derived APOGEE Stellar Parameter and Chemical Abundance Pipeline parameters for this reference set. For the regions of parameter space not well represented by the APOGEE training set (7000 ≤ T ≤ 30,000 K), we supplement with theoretical model spectra. We present our derived parameters along with an analysis of the uncertainties and comparisons to other analyses from the literature.
KW - spectroscopy
KW - fundamental parameters of stars
KW - stellar abundances
KW - astronomy data analysis
KW - astrostatistics
KW - surveys
UR - http://www.scopus.com/inward/record.url?scp=85123725003&partnerID=8YFLogxK
U2 - 10.3847/1538-3881/ac3ca7
DO - 10.3847/1538-3881/ac3ca7
M3 - Article
AN - SCOPUS:85123725003
SN - 0004-6256
VL - 163
JO - Astronomical Journal
JF - Astronomical Journal
IS - 2
M1 - 56
ER -