TY - JOUR
T1 - Sea-level change, carbon cycling and palaeoclimate during the Late Cenomanian of northwest Europe; an integrated palaeoenvironmental analysis
AU - Voigt, S.
AU - Gale, Andy
AU - Voigt, T.
PY - 2007/12
Y1 - 2007/12
N2 - A new high resolution sea-level curve for the Late Cenomanian M. geslinianum Zone has been generated using sequence stratigraphic analysis on transects through the margins of the Anglo-Paris Basin in the UK and Saxony Basin in Germany. Transgressive sediments that bury a rocky shoreline in the Dresden area have proved particularly useful in determining both the absolute amount of sea-level change and the rate of rise. After a brief fall at the base of the M. geslinianum Zone, sea level rose rapidly through the higher part of the zone, resulting in an overall short term eustatic rise of 22–28 m. Biostratigraphy and carbon isotope stratigraphy have enabled detailed correlations to be made between marginal locations and thick, relatively complete, basinal successions. The basinal successions at Eastbourne, UK, and Gröbern, Germany, provide both geochemical proxies for palaeoenvironmental change, including oxygen and carbon isotope records, and an orbital timescale graduated in precession and eccentricity cycles. Integration of the sea-level history with palaeoclimate evolution, palaeoceanography and changes in carbon cycling allows a detailed reconstruction of events during the Late Cenomanian. Orbital forcing on long eccentricity maxima provides the underlying drive for these changes, but amplification by tectonic events and feedback mechanisms augmented the orbital effects and made the Cenomanian/Turonian Boundary Event distinctive. In particular, variations in atmospheric CO2 caused by oceanic drawdown and a brief period of intense volcanic outgassing resulted respectively in short term cooling and warming events. The magnitude and high rates (up to 1 m/1 kyr) of sea-level rise are diagnostic of glacioeustasy, however improbable this may appear at the height of the Cretaceous greenhouse.
AB - A new high resolution sea-level curve for the Late Cenomanian M. geslinianum Zone has been generated using sequence stratigraphic analysis on transects through the margins of the Anglo-Paris Basin in the UK and Saxony Basin in Germany. Transgressive sediments that bury a rocky shoreline in the Dresden area have proved particularly useful in determining both the absolute amount of sea-level change and the rate of rise. After a brief fall at the base of the M. geslinianum Zone, sea level rose rapidly through the higher part of the zone, resulting in an overall short term eustatic rise of 22–28 m. Biostratigraphy and carbon isotope stratigraphy have enabled detailed correlations to be made between marginal locations and thick, relatively complete, basinal successions. The basinal successions at Eastbourne, UK, and Gröbern, Germany, provide both geochemical proxies for palaeoenvironmental change, including oxygen and carbon isotope records, and an orbital timescale graduated in precession and eccentricity cycles. Integration of the sea-level history with palaeoclimate evolution, palaeoceanography and changes in carbon cycling allows a detailed reconstruction of events during the Late Cenomanian. Orbital forcing on long eccentricity maxima provides the underlying drive for these changes, but amplification by tectonic events and feedback mechanisms augmented the orbital effects and made the Cenomanian/Turonian Boundary Event distinctive. In particular, variations in atmospheric CO2 caused by oceanic drawdown and a brief period of intense volcanic outgassing resulted respectively in short term cooling and warming events. The magnitude and high rates (up to 1 m/1 kyr) of sea-level rise are diagnostic of glacioeustasy, however improbable this may appear at the height of the Cretaceous greenhouse.
U2 - 10.1016/j.cretres.2006.04.005
DO - 10.1016/j.cretres.2006.04.005
M3 - Article
SN - 0195-6671
VL - 27
SP - 836
EP - 858
JO - Cretaceous Research
JF - Cretaceous Research
IS - 6
ER -