Abstract
Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the ANTARES and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origin could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational wave and neutrino emission processes.
Original language | English |
---|---|
Article number | 134 |
Number of pages | 16 |
Journal | The Astrophysical Journal |
Volume | 870 |
Issue number | 2 |
DOIs | |
Publication status | Published - 16 Jan 2019 |
Keywords
- astro-ph.HE
- RCUK
- STFC
Fingerprint
Dive into the research topics of 'Search for multimessenger sources of gravitational waves and high-energy neutrinos with advanced LIGO during its first observing run, ANTARES and IceCube'. Together they form a unique fingerprint.Datasets
-
Data availability statement for 'Search for multimessenger sources of gravitational waves and high-energy neutrinos with advanced LIGO during Its first observing run, ANTARES, and IceCube'.
Harry, I. (Creator), Keitel, D. (Creator) & Nuttall, L. (Creator), IOP Publishing, 16 Jan 2019
Dataset