Projects per year
Abstract
Unconventional hydrocarbon resources found across the world are driving a renewed interest in mudrocks hydraulic fracturing methods. However, given the difficulty in safely measuring the various controlling factors in a natural environment, considerable challenges remain in understanding the fracture process. To investigate, we report a new laboratory study that simulates hydraulic fracturing using a conventional triaxial apparatus. We show that fracture orientation is primarily controlled by external stress conditions, and the inherent rock anisotropy and fabric are critical in governing fracture initiation, propagation, and geometry. We use anisotropic Nash Point Shale (NPS) from the early Jurassic with high elastic P‐wave anisotropy (56%) and mechanical tensile anisotropy (60%), and highly anisotropic (cemented) Crab Orchard Sandstone (COS) with P‐wave/tensile anisotropies of 12% and 14% respectively. Initiation of tensile fracture requires 36 MPa for NPS at 1km simulated depth, and 32 MPa for COS, in both cases with cross‐bedding favorable orientated. When unfavorably orientated this increases to 58MPa for NPS at 800m simulated depth, far higher as fractures must now traverse cross‐bedding. We record a swarm of Acoustic Emission activity which exhibits spectral power peaks at 600 kHz and 100 kHz suggesting primary fracture and fluid‐rock resonance respectively. The onset of the AE data precedes the dynamic instability of the fracture by 0.02s, which scales to ~20s for ~100m size fractures. We conclude that a monitoring system could not only become a forecasting tool, but also a means to control the fracking process to prevent avoidable seismic events.
Original language | English |
---|---|
Pages (from-to) | 9562-9579 |
Journal | Journal of Geophysical Research: Solid Earth |
Volume | 124 |
Issue number | 9 |
Early online date | 29 Aug 2019 |
DOIs | |
Publication status | Published - 1 Sept 2019 |
Keywords
- RCUK
- NERC
- NE/L009110/1
- NE/M018687/1
Fingerprint
Dive into the research topics of 'Seismo‐mechanical response of anisotropic rocks under hydraulic fracture conditions: new experimental insights'. Together they form a unique fingerprint.-
RML: Rock Mechanics Laboratory
Benson, P., Koor, N., Solana, C., Rowley, P., Bullen, D., Azizi, A., Clunes Squella, M., Grant, T., Ibemesi, P. & Massa, G.
1/02/12 → …
Project: Research
-
Hydro-fracture in the laboratory (NERC): Linking fracture networks to permeability and seismicity using rock physics as a laboratory tool
Benson, P.
Natural Environment Research Council
1/09/14 → 1/10/18
Project: Research