TY - JOUR
T1 - Stimulatory and inhibitory effects of organohalides on the dehalogenating activities of PCB-dechlorinating bacterium o-17
AU - May, H.
AU - Cutter, L.
AU - Miller, G.
AU - Milliken, C.
AU - Watts, Joy
AU - Sowers, K.
PY - 2006
Y1 - 2006
N2 - Bacterium o-17, a microorganism capable of the ortho dechlorination of 2,3,5,6-polychlorinated biphenyl (PCB), is a member of a sediment-free, nonmethanogenic mixed culture. The culture was examined for the ability to dechlorinate 26 PCB congeners, 12 chlorobenzenes (CBZs), and 6 chlorinated ethenes (CEs). Eight of the PCBs and 4 of the CBZs were dechlorinated including single-flanked ortho PCB chlorines, but double-flanked chlorines of PCBs and CBZs were preferentially dechlorinated. The dechlorination of three of the PCBs (2,3,4,5,6-, 2,3,4,6-, and 2,3,5,6-PCB), three of the CBZs (hexa-, penta-, and 1,2,3-CBZ), and PCE could be sustained for three or more sequential transfers of the bacterial community. Two PCBs (2,3,4- and 2,3,5-PCB), two CBZs (1,2,3,5- and 1,2,4,5-CBZ), and trichloroethene were dechlorinated only when a more extensively chlorinated parent compound was present. Aroclor 1260 and 2,4,6-PCB, not dechlorinated by the culture, inhibited the dechlorination of 2,3,5,6-PCB. Within the culture only bacterium o-17 was linked to dechlorination by PCR-DGGE analysis, confirming that this dehalogenating species was the catalyst for the dechlorination of the compounds tested. The microorganism is capable of dechlorinating several different congeners of PCBs, CBZs, and CEs, and it remains a rare example of an ortho-PCB dechlorinator. However, its limited ability to dechlorinate more extensively chlorinated congeners and Aroclor plus the inhibitory effects of some PCB congeners upon the bacterium is consistent with the observed infrequency of this reaction in the environment. An assessment of bioremediation potential of this microorganism in situ will require a greater understanding of the synergistic, cometabolic and competitive interactions of PCB dechlorinating microbial communities.
AB - Bacterium o-17, a microorganism capable of the ortho dechlorination of 2,3,5,6-polychlorinated biphenyl (PCB), is a member of a sediment-free, nonmethanogenic mixed culture. The culture was examined for the ability to dechlorinate 26 PCB congeners, 12 chlorobenzenes (CBZs), and 6 chlorinated ethenes (CEs). Eight of the PCBs and 4 of the CBZs were dechlorinated including single-flanked ortho PCB chlorines, but double-flanked chlorines of PCBs and CBZs were preferentially dechlorinated. The dechlorination of three of the PCBs (2,3,4,5,6-, 2,3,4,6-, and 2,3,5,6-PCB), three of the CBZs (hexa-, penta-, and 1,2,3-CBZ), and PCE could be sustained for three or more sequential transfers of the bacterial community. Two PCBs (2,3,4- and 2,3,5-PCB), two CBZs (1,2,3,5- and 1,2,4,5-CBZ), and trichloroethene were dechlorinated only when a more extensively chlorinated parent compound was present. Aroclor 1260 and 2,4,6-PCB, not dechlorinated by the culture, inhibited the dechlorination of 2,3,5,6-PCB. Within the culture only bacterium o-17 was linked to dechlorination by PCR-DGGE analysis, confirming that this dehalogenating species was the catalyst for the dechlorination of the compounds tested. The microorganism is capable of dechlorinating several different congeners of PCBs, CBZs, and CEs, and it remains a rare example of an ortho-PCB dechlorinator. However, its limited ability to dechlorinate more extensively chlorinated congeners and Aroclor plus the inhibitory effects of some PCB congeners upon the bacterium is consistent with the observed infrequency of this reaction in the environment. An assessment of bioremediation potential of this microorganism in situ will require a greater understanding of the synergistic, cometabolic and competitive interactions of PCB dechlorinating microbial communities.
U2 - 10.1021/es052521y
DO - 10.1021/es052521y
M3 - Article
SN - 0013-936X
VL - 40
SP - 5704
EP - 5709
JO - Environmental Science & Technology
JF - Environmental Science & Technology
IS - 18
ER -