Surface enhanced deep Raman detection of cancer tumour through 71 mm of heterogeneous tissue

Priyanka Dey, Alexandra Vaideanu, Sara Mosca, Marzieh Salimi, Benjamin Gardner, Francesca Palombo, Ijeoma Uchegbu, Jeremy Baumberg, Andreas Schatzlein, Pavel Matousek*, Nick Stone

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Downloads (Pure)


Detection of solid tumours through tissue− from depths relevant to humans− has been a significant challenge for biomedical Raman spectroscopy. The combined use of surface enhanced Raman scattering (SERS) imaging agents with deep Raman spectroscopy (DRS), i.e., surface enhanced deep Raman spectroscopy (SEDRS), offer prospects for overcoming such obstacles. In this study, we investigated the maximum detection depth through which the retrieval of SERS signal of a passively targeted biphenyl-4-thiol tagged gold nanoparticle (NP) imaging agent, injected subcutaneously into a mouse bearing breast cancer tumour, was possible. A compact 830 nm set-up with a hand-held probe and the flexibility of switching between offset, transmission and conventional Raman modalities was developed for this study. In vivo injection of the above SERS NP primary dose allowed surface tumour detection, whereas additional post mortem NP booster dose was required for detection of deeply seated tumours through heterogeneous animal tissue (comprising of proteins, fat, bone, organs, blood, and skin). The highest detection depth of 71 mm was probed using transmission, translating into a ∼40% increase in detection depth compared to earlier reports. Such improvements in detection depth along with the inherent Raman chemical sensitivity brings SEDRS one step closer to future clinical cancer imaging technology.

Original languageEnglish
Pages (from-to)337-349
Number of pages13
Issue number3
Publication statusPublished - 21 Mar 2022


  • cancer tumour detection
  • Plasmonic gold nanoparticles
  • SEDRS mouse breast cancer
  • SERS
  • SORS
  • TRS
  • UKRI
  • EP/R020965/1


Dive into the research topics of 'Surface enhanced deep Raman detection of cancer tumour through 71 mm of heterogeneous tissue'. Together they form a unique fingerprint.

Cite this