Systematic framework to predict early-stage liver carcinoma using hybrid of feature selection techniques and regression techniques

Marium Mehmood, Nasser Alshammari, Saad Awadh Alanazi, Fahad Ahmad

Research output: Contribution to journalArticlepeer-review

16 Downloads (Pure)


The liver is the human body’s mandatory organ, but detecting liver disease at an early stage is very difficult due to the hiddenness of symptoms. Liver diseases may cause loss of energy or weakness when some irregularities in the working of the liver get visible. Cancer is one of the most common diseases of the liver and also the most fatal of all. Uncontrolled growth of harmful cells is developed inside the liver. If diagnosed late, it may cause death. Treatment of liver diseases at an early stage is, therefore, an important issue as is designing a model to diagnose early disease. Firstly, an appropriate feature should be identified which plays a more significant part in the detection of liver cancer at an early stage. Therefore, it is essential to extract some essential features from thousands of unwanted features. So, these features will be mined using data mining and soft computing techniques. These techniques give optimized results that will be helpful in disease diagnosis at an early stage. In these techniques, we use feature selection methods to reduce the dataset’s feature, which include Filter, Wrapper, and Embedded methods. Different Regression algorithms are then applied to these methods individually to evaluate the result. Regression algorithms include Linear Regression, Ridge Regression, LASSO Regression, Support Vector Regression, Decision Tree Regression, Multilayer Perceptron Regression, and Random Forest Regression. Based on the accuracy and error rates generated by these Regression algorithms, we have evaluated our results. The result shows that Random Forest Regression with the Wrapper Method from all the deployed Regression techniques is the best and gives the highest R2-Score of 0.8923 and lowest MSE of 0.0618.
Original languageEnglish
Article number7816200
Number of pages11
Publication statusPublished - 6 Jan 2022

Cite this