TY - JOUR
T1 - Targeted and extended acetylation of histones H4 and H3 at active and inactive genes in chicken embryo erythrocytes
AU - Myers, Fiona
AU - Evans, Dain R.
AU - Clayton, A.
AU - Thorne, Alan
AU - Crane-Robinson, Colyn
PY - 2001
Y1 - 2001
N2 - Affinity-purified polyclonal antibodies recognizing the most highly acetylated forms of histones H3 and H4 were used in immunoprecipitation assays with chromatin fragments derived from 15-day chicken embryo erythrocytes by micrococcal nuclease digestion. The distribution of hyperacetylated H4 and H3 was mapped at the housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and the tissue-specific gene, carbonic anhydrase (CA). H3 and H4 acetylation was found targeted to the CpG island region at the 5′ end of both these genes, falling off in the downstream direction. In contrast, at the βA-globin gene, both H3 and H4 are highly acetylated throughout the gene and at the downstream enhancer, with a maximum at the promoter. Low level acetylation was observed at the 5′ end of the inactive ovalbumin gene. Run-on assays to measure ongoing transcription showed that theGAPDH and CA genes are transcribed at a much lower rate than the adult βA-globin gene. The extensive high level acetylation at the βA-globin gene correlates most simply with its high rate of transcription. The targeted acetylation of histones H3 and H4 at the GAPDH andCA genes is consistent with a role in transcriptional initiation and implies that transcriptional elongation does not necessarily require hyperacetylation.
AB - Affinity-purified polyclonal antibodies recognizing the most highly acetylated forms of histones H3 and H4 were used in immunoprecipitation assays with chromatin fragments derived from 15-day chicken embryo erythrocytes by micrococcal nuclease digestion. The distribution of hyperacetylated H4 and H3 was mapped at the housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and the tissue-specific gene, carbonic anhydrase (CA). H3 and H4 acetylation was found targeted to the CpG island region at the 5′ end of both these genes, falling off in the downstream direction. In contrast, at the βA-globin gene, both H3 and H4 are highly acetylated throughout the gene and at the downstream enhancer, with a maximum at the promoter. Low level acetylation was observed at the 5′ end of the inactive ovalbumin gene. Run-on assays to measure ongoing transcription showed that theGAPDH and CA genes are transcribed at a much lower rate than the adult βA-globin gene. The extensive high level acetylation at the βA-globin gene correlates most simply with its high rate of transcription. The targeted acetylation of histones H3 and H4 at the GAPDH andCA genes is consistent with a role in transcriptional initiation and implies that transcriptional elongation does not necessarily require hyperacetylation.
U2 - 10.1074/jbc.M009472200
DO - 10.1074/jbc.M009472200
M3 - Article
SN - 0021-9258
VL - 276
SP - 20197
EP - 20205
JO - The Journal of Biological Chemistry
JF - The Journal of Biological Chemistry
IS - 23
ER -