Testing Brans-Dicke gravity with screening by scalar gravitational wave memory

Research output: Contribution to journalArticlepeer-review

37 Downloads (Pure)

Abstract

The Brans-Dicke theory of gravity is one of the oldest ideas to extend general relativity by introducing a non-minimal coupling between the scalar field and gravity. The Solar System tests put tight constraints on the theory. In order to evade these constraints, various screening mechanisms have been proposed. These screening mechanisms allow the scalar field to couple to matter as strongly as gravity in low density environments while suppressing it in the Solar System. The Vainshtein mechanism, which is found in various modified gravity models such as massive gravity, braneworld models and scalar tensor theories, suppresses the scalar field efficiently in the vicinity of a massive object. This makes it difficult to test these theories from gravitational wave observations. We point out that the recently found scalar gravitational wave memory effect, which is caused by a permanent change in spacetime geometry due to the collapse of a star to a back hole can be significantly enhanced in the Brans-Dicke theory of gravity with the Vainshtein mechanism. This provides a possibility to detect scalar gravitational waves by a network of three or more gravitational wave detectors.
Original languageEnglish
Article number021502(R)
Number of pages6
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Volume102
Issue number2
Early online date8 Jul 2020
DOIs
Publication statusPublished - 15 Jul 2020

Keywords

  • RCUK
  • STFC
  • ST/S000550/1

Fingerprint

Dive into the research topics of 'Testing Brans-Dicke gravity with screening by scalar gravitational wave memory'. Together they form a unique fingerprint.

Cite this