Testing Munk's hypothesis for submesoscale eddy generation using observations in the North Atlantic

Christian E. Buckingham, Zammath Khaleel, Ayah Lazar, Adrian P. Martin, John T. Allen, Alberto C. Naveira Garabato, Andrew F. Thompson, Clément Vic

    Research output: Contribution to journalArticlepeer-review

    108 Downloads (Pure)

    Abstract

    A high-resolution satellite image that reveals a train of coherent, submesoscale (6 km) vortices along the edge of an ocean front is examined in concert with hydrographic measurements in an effort to understand formation mechanisms of the submesoscale eddies. The infrared satellite image consists of ocean surface temperatures at math formula m resolution over the midlatitude North Atlantic (48.69°N, 16.19°W). Concomitant altimetric observations coupled with regular spacing of the eddies suggest the eddies result from mesoscale stirring, filamentation, and subsequent frontal instability. While horizontal shear or barotropic instability (BTI) is one mechanism for generating such eddies (Munk's hypothesis), we conclude from linear theory coupled with the in situ data that mixed layer or submesoscale baroclinic instability (BCI) is a more plausible explanation for the observed submesoscale vortices. Here we assume that the frontal disturbance remains in its linear growth stage and is accurately described by linear dynamics. This result likely has greater applicability to the open ocean, i.e., regions where the gradient Rossby number is reduced relative to its value along coasts and within strong current systems. Given that such waters comprise an appreciable percentage of the ocean surface and that energy and buoyancy fluxes differ under BTI and BCI, this result has wider implications for open-ocean energy/buoyancy budgets and parameterizations within ocean general circulation models. In summary, this work provides rare observational evidence of submesoscale eddy generation by BCI in the open ocean.
    Original languageEnglish
    Pages (from-to)6725-6745
    Number of pages21
    JournalJournal of Geophysical Research: Oceans
    Volume122
    Issue number8
    Early online date24 Jul 2017
    DOIs
    Publication statusPublished - 1 Aug 2017

    Fingerprint

    Dive into the research topics of 'Testing Munk's hypothesis for submesoscale eddy generation using observations in the North Atlantic'. Together they form a unique fingerprint.

    Cite this