Abstract
We present spectroscopic confirmation of candidate strong gravitational lenses using the Keck Observatory and Very Large Telescope as part of our ASTRO 3D Galaxy Evolution with Lenses (AGEL) survey. We confirm that 1) search methods using Convolutional Neural Networks (CNN) with visual inspection successfully identify strong gravitational lenses and 2) the lenses are at higher redshifts relative to existing surveys due to the combination of deeper and higher resolution imaging from DECam and spectroscopy spanning optical to near-infrared wavelengths. We measure 104 redshifts in 77 systems selected from a catalog in the DES and DECaLS imaging fields (rz_defl), and 15 lenses with a spectroscopic redshift for either the deflector (z_defl>0.21) or source (z_src>1.34). For the 68 lenses, the deflectors and sources have average redshifts and standard deviations of 0.58+/-0.14 and 1.92+/-0.59 respectively, and corresponding redshift ranges of (0.210.5 that are ideal for follow-up studies to track how mass density profiles evolve with redshift. Our goal with AGEL is to spectroscopically confirm ~100 strong gravitational lenses that can be observed from both hemispheres throughout the year. The AGEL survey is a resource for refining automated all-sky searches and addressing a range of questions in astrophysics and cosmology.
Original language | English |
---|---|
Article number | 148 |
Number of pages | 15 |
Journal | The Astrophysical Journal |
Volume | 164 |
Issue number | 4 |
Early online date | 26 Sept 2022 |
DOIs | |
Publication status | Published - 1 Oct 2022 |