The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the Fourier space wedges of the final sample

Jan Niklas Grieb, Ariel G. Sánchez, Salvador Salazar-Albornoz, Román Scoccimarro, Martín Crocce, Claudio Dalla Vecchia, Francesco Montesano, Héctor Gil-Marín, Ashley J. Ross, Florian Beutler, Sergio Rodríguez-Torres, Chia-Hsun Chuang, Francisco Prada, Francisco-Shu Kitaura, Antonio J. Cuesta, Daniel J. Eisenstein, Will J. Percival, Mariana Vargas-Magana, Jeremy L. Tinker, Rita TojeiroJoel R. Brownstein, Claudia Maraston, Robert C. Nichol, Matthew D. Olmstead, Lado Samushia, Hee-Jong Seo, Alina Streblyanska, Gong-bo Zhao

Research output: Contribution to journalArticlepeer-review

141 Downloads (Pure)

Abstract

We extract cosmological information from the anisotropic power spectrum measurements from the recently completed Baryon Oscillation Spectroscopic Survey (BOSS), extending the concept of clustering wedges to Fourier space. Making use of new fast-Fourier-transformation-based estimators, we measure the power-spectrum clustering wedges of the BOSS sample by filtering out the information of Legendre multipoles ℓ > 4. Our modelling of these measurements is based on novel approaches to describe non-linear evolution, bias, and redshift-space distortions, which we test using synthetic catalogues based on large-volume N-body simulations. We are able to include smaller scales than in previous analyses, resulting in tighter cosmological constraints. Using three overlapping redshift bins, we measure the angular-diameter distance, the Hubble parameter, and the cosmic growth rate, and explore the cosmological implications of our full-shape clustering measurements in combination with cosmic microwave background and Type Ia supernova data. Assuming a ΛCDM cosmology, we constrain the matter density to ΩM = 0.311 -0.010 +0.009 and the Hubble parameter to Ho = 67.6 -0.6 +0.7 km s-1 Mpc-1, at a confidence level of 68 per cent. We also allow for non-standard dark energy models and modifications of the growth rate, finding good agreement with the ΛCDM paradigm. For example, we constrain the equation-of-state parameter to w = -1.019 -0.039 +0.048. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. 2016 to produce the final cosmological constraints from BOSS.
Original languageEnglish
Pages (from-to)2085-2112
Number of pages28
JournalMonthly Notices of the Royal Astronomical Society
Volume467
Issue number2
DOIs
Publication statusPublished - 4 Jan 2017

Keywords

  • astro-ph.CO
  • cosmological parameters
  • cosmology: observations
  • dark energy
  • large-scale structure of Universe

Fingerprint

Dive into the research topics of 'The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the Fourier space wedges of the final sample'. Together they form a unique fingerprint.

Cite this