TY - JOUR
T1 - The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey
T2 - single-probe measurements from CMASS anisotropic galaxy clustering
AU - Chuang, Chia-Hsun
AU - Prada, Francisco
AU - Pellejero-Ibanez, Marcos
AU - Beutler, Florian
AU - Cuesta, Antonio J.
AU - Eisenstein, Daniel J.
AU - Escoffier, Stephanie
AU - Ho, Shirley
AU - Kitaura, Francisco-Shu
AU - Kneib, Jean-Paul
AU - Manera, Marc
AU - Nuza, Sebastian E.
AU - Rodriguez-Torres, Sergio
AU - Ross, Ashley
AU - Martin, J. A. Rubino
AU - Samushia, Lado
AU - Schlegel, David J.
AU - Schneider, Donald P.
AU - Wang, Yuting
AU - Weaver, Benjamin A.
AU - Zhao, Gong-Bo
AU - Brownstein, Joel R.
AU - Dawson, Kyle S.
AU - Maraston, Claudia
AU - Olmstead, Matthew D
AU - Thomas, Daniel
N1 - 15 pages, 11 figures. The latest version matches and the accepted version by MNRAS. A bug in the first version has been identified and fixed in the new version. We have redone the analysis with newest data (BOSS DR12)
PY - 2016/10/1
Y1 - 2016/10/1
N2 - With the largest spectroscopic galaxy survey volume drawn from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), we can extract cosmological constraints from the measurements of redshift and geometric distortions at quasi-linear scales (e.g. above 50 h−1 Mpc). We analyse the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS galaxy sample, at the effective redshift z = 0.59, to obtain constraints on the Hubble expansion rate H(z), the angular- diameter distance DA(z), the normalized growth rate f(z)σ8(z), and the physical matter density Ωm h2. We obtain robust measurements by including a polynomial as the model for the systematic errors, and find it works very well against the systematic effects, e.g. ones induced by stars and seeing. We provide accurate measurements {DA(0.59)rs,fid/rs, H(0.59)rs/rs,fid, f(0.59)σ8(0.59), Ωm h2} = {1427 ± 26 Mpc, 97.3 ± 3.3 km s−1 Mpc−1, 0.488 ± 0.060, 0.135 ± 0.016}, where rs is the comoving sound horizon at the drag epoch and rs,fid = 147.66 Mpc is the sound scale of the fiducial cosmology used in this study. The parameters which are not well constrained by our galaxy clustering analysis are marginalized over with wide flat priors. Since no priors from other data sets, e.g. cosmic microwave background (CMB), are adopted and no dark energy models are assumed, our results from BOSS CMASS galaxy clustering alone may be combined with other data sets, i.e. CMB, SNe, lensing or other galaxy clustering data to constrain the parameters of a given cosmological model. The uncertainty on the dark energy equation of state parameter, w, from CMB+CMASS is about 8 per cent. The uncertainty on the curvature fraction, Ωk, is 0.3 per cent. We do not find deviation from flat ΛCDM.
AB - With the largest spectroscopic galaxy survey volume drawn from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), we can extract cosmological constraints from the measurements of redshift and geometric distortions at quasi-linear scales (e.g. above 50 h−1 Mpc). We analyse the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS galaxy sample, at the effective redshift z = 0.59, to obtain constraints on the Hubble expansion rate H(z), the angular- diameter distance DA(z), the normalized growth rate f(z)σ8(z), and the physical matter density Ωm h2. We obtain robust measurements by including a polynomial as the model for the systematic errors, and find it works very well against the systematic effects, e.g. ones induced by stars and seeing. We provide accurate measurements {DA(0.59)rs,fid/rs, H(0.59)rs/rs,fid, f(0.59)σ8(0.59), Ωm h2} = {1427 ± 26 Mpc, 97.3 ± 3.3 km s−1 Mpc−1, 0.488 ± 0.060, 0.135 ± 0.016}, where rs is the comoving sound horizon at the drag epoch and rs,fid = 147.66 Mpc is the sound scale of the fiducial cosmology used in this study. The parameters which are not well constrained by our galaxy clustering analysis are marginalized over with wide flat priors. Since no priors from other data sets, e.g. cosmic microwave background (CMB), are adopted and no dark energy models are assumed, our results from BOSS CMASS galaxy clustering alone may be combined with other data sets, i.e. CMB, SNe, lensing or other galaxy clustering data to constrain the parameters of a given cosmological model. The uncertainty on the dark energy equation of state parameter, w, from CMB+CMASS is about 8 per cent. The uncertainty on the curvature fraction, Ωk, is 0.3 per cent. We do not find deviation from flat ΛCDM.
KW - astro-ph.CO
KW - cosmological parameters
KW - cosmology: observations
KW - distance scale
KW - largescale structure of Universe
U2 - 10.1093/mnras/stw1535
DO - 10.1093/mnras/stw1535
M3 - Article
VL - 461
SP - 3781
EP - 3793
JO - MNRAS
JF - MNRAS
SN - 0035-8711
IS - 4
ER -