The effect of size, weight, body compartment, sex and reproductive status on the bioaccumulation of 19 trace elements in rope-grown Mytilus galloprovincialis

J. Richir, S. Gobert

Research output: Contribution to journalArticle

Abstract

Numerous trace elements (TEs) can be considered as potential pollutants of the environment, their mining productions and industrial uses increasing worldwide. Their monitoring can be achieved through the use of bioindicator species, such as the Mediterranean mussel Mytilus galloprovincialis (Lamarck, 1819). That species has been widely used to monitor the chemical pollution of coastal ecosystems by Cr, Ni, Cu, Zn, Cd, Pb, As, Ag and V. Conversely, environmental levels of Be, Al, Fe, Mn, Co, Se, Mo, Sn, Sb and Bi have been little or not monitored so far in mussel watch programs. Bioaccumulation processes of these 19 TEs in rope-grown M. galloprovincialis purchased from a salt pond with good chemical water quality were thus investigated in the present study.
Mussels efficiently accumulated the 19 studied TEs. Bioaccumulation processes were driven by numerous mutually dependent biological parameters such as the mussel size and flesh weight, the sex and the reproductive status and the body compartment considered. TE bioaccumulation was a power function
of the mussel soft body dry weight; total contents linearly increased with the shell length. Small-size mussels overall concentrated more TEs, with a high inter-individual variability, consequently influencing the modelling of their bioaccumulation in the whole rope population. Although a large range of
rope-grown M. galloprovincialis sizes can be used for monitoring purposes, one will thus take care not to use extreme size individuals. The influence of gametogenesis in determining female body higher TE concentrations prior to spawning could not be neglected and varied depending on the element. TEs were preferentially accumulated in the hepatopancreas, except for Zn, Se, Cd and Mo, more concentrated in gills. Gametogenesis did not influence TE distribution between body compartments, but likely diluted their concentrations as a direct consequence of massive reproductive tissue production.
So, results from the present study underline the potential use of M. galloprovincialis in the biomonitoring of numerous little studied TEs and give some insights into the decisive role played by some relevant biological parameters in bioaccumulation processes of the 19 investigated TEs in rope-grown mussels.
Original languageEnglish
Pages (from-to)33-47
JournalEcological Indicators
Volume36
DOIs
Publication statusPublished - Jan 2014

Fingerprint

Dive into the research topics of 'The effect of size, weight, body compartment, sex and reproductive status on the bioaccumulation of 19 trace elements in rope-grown Mytilus galloprovincialis'. Together they form a unique fingerprint.

Cite this