TY - JOUR
T1 - The influence of acute and 23 days of intermittent hypoxic exposures on the exercise-induced forehead sweating response
AU - Kacin, A.
AU - Golija, P.
AU - Eiken, O.
AU - Tipton, Mike
AU - Mekjavic, I.
PY - 2007
Y1 - 2007
N2 - The effect of acute and 23 days of intermittent exposures to normobaric hypoxia on the forehead sweating response during steady-state exercise was investigated. Eight endurance athletes slept in a normobaric hypoxic room for a minimum of 8 h per day at a simulated altitude equivalent to 2,700 m for 23 days (sleep high–train low regimen). Peak oxygen uptake and peak work rate (WRpeak) were determined under normoxic (20.9%O2) and hypoxic (13.5%O2) conditions prior to (pre-IHE), and immediately after (post-IHE) the intermittent hypoxic exposures (IHE). Also, each subject performed three 30-min cycle-ergometry bouts: (1) normoxic exercise at 50% WRpeak attained in normoxia (control trial; CT); (2) hypoxic exercise at 50% WRpeak attained in hypoxia (hypoxic relative trial; HRT) and (3) hypoxic exercise at the same absolute work rate as in CT (hypoxic absolute trial; HAT). Exposure to hypoxia induced a 33 and 37% decrease (P < 0.001) in pre-IHE and post-IHE, respectively. Despite similar relative oxygen uptake during HAT pre-IHE and post-IHE, the ratings of perceived whole-body exertion decreased substantially (P < 0.05) post-IHE. Pre-IHE the sweat secretion on the forehead was greater (P < 0.01) in the HAT (2.60 (0.80) mg cm−2 min−1) compared to the other two trials (CT = 1.87 (1.09) mg cm−2 min−1; HRT = 1.57 (0.82) mg cm−2 min−1) despite a similar exercise-induced elevation in body temperatures, resulting in an augmented (P < 0.01) gain of the sweating response The augmented and during the HAT were no longer evident post-IHE. Thus, it appears that exercise sweating on the forehead is potentiated by acute exposure to hypoxia, an effect which can be abolished by 23 days of intermittent hypoxic exposures.
AB - The effect of acute and 23 days of intermittent exposures to normobaric hypoxia on the forehead sweating response during steady-state exercise was investigated. Eight endurance athletes slept in a normobaric hypoxic room for a minimum of 8 h per day at a simulated altitude equivalent to 2,700 m for 23 days (sleep high–train low regimen). Peak oxygen uptake and peak work rate (WRpeak) were determined under normoxic (20.9%O2) and hypoxic (13.5%O2) conditions prior to (pre-IHE), and immediately after (post-IHE) the intermittent hypoxic exposures (IHE). Also, each subject performed three 30-min cycle-ergometry bouts: (1) normoxic exercise at 50% WRpeak attained in normoxia (control trial; CT); (2) hypoxic exercise at 50% WRpeak attained in hypoxia (hypoxic relative trial; HRT) and (3) hypoxic exercise at the same absolute work rate as in CT (hypoxic absolute trial; HAT). Exposure to hypoxia induced a 33 and 37% decrease (P < 0.001) in pre-IHE and post-IHE, respectively. Despite similar relative oxygen uptake during HAT pre-IHE and post-IHE, the ratings of perceived whole-body exertion decreased substantially (P < 0.05) post-IHE. Pre-IHE the sweat secretion on the forehead was greater (P < 0.01) in the HAT (2.60 (0.80) mg cm−2 min−1) compared to the other two trials (CT = 1.87 (1.09) mg cm−2 min−1; HRT = 1.57 (0.82) mg cm−2 min−1) despite a similar exercise-induced elevation in body temperatures, resulting in an augmented (P < 0.01) gain of the sweating response The augmented and during the HAT were no longer evident post-IHE. Thus, it appears that exercise sweating on the forehead is potentiated by acute exposure to hypoxia, an effect which can be abolished by 23 days of intermittent hypoxic exposures.
U2 - 10.1007/s00421-006-0364-9
DO - 10.1007/s00421-006-0364-9
M3 - Article
SN - 1439-6319
VL - 99
SP - 557
EP - 566
JO - European Journal of Applied Physiology
JF - European Journal of Applied Physiology
IS - 5
ER -