The microbiology of metal mine waste: bioremediation applications and implications for planetary health

Laura Newsome*, Carmen Falagán

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    176 Downloads (Pure)

    Abstract

    Mine wastes pollute the environment with metals and metalloids in toxic concentrations, causing problems for humans and wildlife. Microorganisms colonize and inhabit mine wastes, and can influence the environmental mobility of metals through metabolic activity, biogeochemical cycling and detoxification mechanisms. In this article we review the microbiology of the metals and metalloids most commonly associated with mine wastes: arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc. We discuss the molecular mechanisms by which bacteria, archaea, and fungi interact with contaminant metals and the consequences for metal fate in the environment, focusing on long-term field studies of metal-impacted mine wastes where possible. Metal contamination can decrease the efficiency of soil functioning and essential element cycling due to the need for microbes to expend energy to maintain and repair cells. However, microbial communities are able to tolerate and adapt to metal contamination, particularly when the contaminant metals are essential elements that are subject to homeostasis or have a close biochemical analog. Stimulating the development of microbially reducing conditions, for example in constructed wetlands, is beneficial for remediating many metals associated with mine wastes. It has been shown to be effective at low pH, circumneutral and high pH conditions in the laboratory and at pilot field-scale. Further demonstration of this technology at full field-scale is required, as is more research to optimize bioremediation and to investigate combined remediation strategies. Microbial activity has the potential to mitigate the impacts of metal mine wastes, and therefore lessen the impact of this pollution on planetary health.

    Original languageEnglish
    Article numbere2020GH000380
    Number of pages51
    JournalGeoHealth
    Volume5
    Issue number10
    Early online date8 Sept 2021
    DOIs
    Publication statusPublished - 1 Oct 2021

    Keywords

    • bacteria
    • biogeochemistry
    • fungi
    • mining
    • remediation
    • toxicity
    • UKRI
    • NERC
    • NE/V006932/1

    Fingerprint

    Dive into the research topics of 'The microbiology of metal mine waste: bioremediation applications and implications for planetary health'. Together they form a unique fingerprint.

    Cite this