TY - JOUR
T1 - The mitochondrial activity of leukocytes from Artibeus jamaicensis bats remains unaltered after several weeks of flying restriction
AU - Sánchez-García, F Javier
AU - Aguilar-Setien, José Alvaro
AU - Pérez-Hernández, C Angélica
AU - Kolstoe, Simon E
AU - Coker, Alun
AU - Rendon-Franco, Emilio
AU - Moreno-Altamirano, María Maximina Bertha
N1 - Copyright © 2021 Elsevier Ltd. All rights reserved.
PY - 2022/2/1
Y1 - 2022/2/1
N2 - Bats are the only flying mammals known. They have longer lifespan than other mammals of similar size and weight, and can resist high loads of many pathogens, mostly viruses, with no signs of disease. These distinctive characteristics have been attributed to their metabolic rate that is thought to be the result of their flying lifestyle. Compared with non-flying mammals, bats have lower production of reactive oxygen species (ROS), and high levels of antioxidant enzymes such as superoxide dismutase. This anti-oxidative vs. oxidative profile may help to explain bat's longer than expected lifespans. The aim of this study was to assess the effect that a significant reduction in flying has on bats leukocytes mitochondrial activity. This was assessed using samples of lymphoid and myeloid cells from peripheral blood from Artibeus jamaicensis bats shortly after capture and up to six weeks after flying deprivation. Mitochondrial membrane potential (Δψm), mitochondrial calcium (mCa2+), and mitochondrial ROS (mROS) were used as key indicators of mitochondrial activity, while total ROS and glucose uptake were used as additional indicators of cell metabolism. Results showed that total ROS and glucose uptake were statistically significantly lower at six weeks of flying deprivation (p < 0.05), in both lymphoid and myeloid cells, however no significant changes in mitochondrial activity associated with flying deprivation was observed (p > 0.05). These results suggest that bat mitochondria are stable to sudden changes in physical activity, at least up to six weeks of flying deprivation. However, decrease in total ROS and glucose uptake in myeloid cells after six weeks of captivity suggest a compensatory mechanism due to the lack of the highly metabolic demands associated with flying.
AB - Bats are the only flying mammals known. They have longer lifespan than other mammals of similar size and weight, and can resist high loads of many pathogens, mostly viruses, with no signs of disease. These distinctive characteristics have been attributed to their metabolic rate that is thought to be the result of their flying lifestyle. Compared with non-flying mammals, bats have lower production of reactive oxygen species (ROS), and high levels of antioxidant enzymes such as superoxide dismutase. This anti-oxidative vs. oxidative profile may help to explain bat's longer than expected lifespans. The aim of this study was to assess the effect that a significant reduction in flying has on bats leukocytes mitochondrial activity. This was assessed using samples of lymphoid and myeloid cells from peripheral blood from Artibeus jamaicensis bats shortly after capture and up to six weeks after flying deprivation. Mitochondrial membrane potential (Δψm), mitochondrial calcium (mCa2+), and mitochondrial ROS (mROS) were used as key indicators of mitochondrial activity, while total ROS and glucose uptake were used as additional indicators of cell metabolism. Results showed that total ROS and glucose uptake were statistically significantly lower at six weeks of flying deprivation (p < 0.05), in both lymphoid and myeloid cells, however no significant changes in mitochondrial activity associated with flying deprivation was observed (p > 0.05). These results suggest that bat mitochondria are stable to sudden changes in physical activity, at least up to six weeks of flying deprivation. However, decrease in total ROS and glucose uptake in myeloid cells after six weeks of captivity suggest a compensatory mechanism due to the lack of the highly metabolic demands associated with flying.
KW - bats
KW - wildlife
KW - lifespan
KW - Leukocytes
KW - Mitochondria
KW - Flying deprivation
U2 - 10.1016/j.dci.2021.104303
DO - 10.1016/j.dci.2021.104303
M3 - Article
C2 - 34728275
SN - 0145-305X
VL - 127
JO - Developmental and Comparative Immunology
JF - Developmental and Comparative Immunology
M1 - 104303
ER -