Abstract
We study the nature of voids defined as single-stream regions that have not undergone shell-crossing. We use ORIGAMI to determine the cosmic web morphology of each dark matter particle in a suite of cosmological $N$-body simulations, which explicitly calculates whether a particle has crossed paths with others along multiple sets of axes and does not depend on a parameter or smoothing scale. The theoretical picture of voids is that of expanding underdensities with borders defined by shell-crossing. We find instead that locally underdense single-stream regions are not bounded on all sides by multi-stream regions, thus they percolate, filling the simulation volume; we show that the set of multi-stream particles also percolates. This percolation persists to high resolution, where the mass fraction of single-stream voids is low, because the volume fraction remains high; we speculate on the fraction of collapsed mass in the continuum limit of infinite resolution. By introducing a volume threshold parameter to define underdense void "cores", we create a catalog of ORIGAMI voids which consist entirely of single-stream particles and measure their percolation properties, volume functions, and average densities.
Original language | English |
---|---|
Pages (from-to) | 3239-3253 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 450 |
Issue number | 3 |
DOIs | |
Publication status | Published - 17 Oct 2014 |
Keywords
- astro-ph.CO
- RCUK
- STFC