The quenching timescale and quenching rate of galaxies

Jianhui Lian, Renbin Yan, Kai Zhang, Xu Kong

Research output: Contribution to journalArticlepeer-review

51 Downloads (Pure)


The average star formation rate (SFR) in galaxies has been declining since the redshift of 2. A fraction of galaxies quench and become quiescent. We constrain two key properties of the quenching process: the quenching timescale and the quenching rate among galaxies. We achieve this by analyzing the galaxy number density profile in NUV−u color space and the distribution in NUV−u versus u − i color–color diagram with a simple toy-model framework. We focus on galaxies in three mass bins between 1010 and 1010.6 M ⊙. In the NUV−u versus u − i color–color diagram, the red u − i galaxies exhibit a different slope from the slope traced by the star-forming galaxies. This angled distribution and the number density profile of galaxies in NUV−u space strongly suggest that the decline of the SFR in galaxies has to accelerate before they turn quiescent. We model this color–color distribution with a two-phase exponential decline star formation history. The models with an e-folding time in the second phase (the quenching phase) of 0.5 Gyr best fit the data. We further use the NUV−u number density profile to constrain the quenching rate among star-forming galaxies as a function of mass. Adopting an e-folding time of 0.5 Gyr in the second phase (or the quenching phase), we found the quenching rate to be 19%/Gyr, 25%/Gyr and 33%/Gyr for the three mass bins. These are upper limits of the quenching rate as the transition zone could also be populated by rejuvenated red-sequence galaxies.
Original languageEnglish
Article number29
JournalThe Astrophysical Journal
Issue number1
Publication statusPublished - 14 Nov 2016
Externally publishedYes


Dive into the research topics of 'The quenching timescale and quenching rate of galaxies'. Together they form a unique fingerprint.

Cite this