Thermodynamics of DNA: heat capacity changes on duplex unfolding

Anatoliy Dragan, Peter Privalov, Colyn Crane-Robinson

Research output: Contribution to journalArticlepeer-review

94 Downloads (Pure)


The heat capacity change, ΔCp, accompanying the folding/unfolding of macromolecules reflects their changing state of hydration. Thermal denaturation of the DNA duplex is characterized by an increase in ΔCp but of much lower magnitude than observed for proteins. To understand this difference, the changes in solvent accessible surface area (ΔASA) have been determined for unfolding the B-form DNA duplex into disordered single strands. These showed that the polar component represents ~ 55% of the total increase in ASA, in contrast to globular proteins of similar molecular weight for which the polar component is only about 1/3rd of the total. As the exposure of polar surface results in a decrease of ΔCp, this explains the much reduced heat capacity increase observed for DNA and emphasizes the enhanced role of polar interactions in maintaining duplex structure. Appreciation of a non-zero ΔCp for DNA has important consequences for the calculation of duplex melting temperatures (Tm). A modified approach to Tm prediction is required and comparison is made of current methods with an alternative protocol.
Original languageEnglish
Pages (from-to)773-779
Number of pages7
JournalEuropean Biophysics Journal
Issue number8
Early online date5 Nov 2019
Publication statusPublished - 1 Dec 2019


  • DNA
  • heat capacity
  • hydration
  • solvent accessible surface area
  • surface polarity


Dive into the research topics of 'Thermodynamics of DNA: heat capacity changes on duplex unfolding'. Together they form a unique fingerprint.

Cite this