Abstract
Purpose: To evaluate the safety and efficacy of dexamethasone intravitreal implant (Ozurdex, DEX implant) 0.7 and 0.35 mg in the treatment of patients with diabetic macular edema (DME).
Design: Two randomized, multicenter, masked, sham-controlled, phase III clinical trials with identical protocols were conducted. Data were pooled for analysis.
Participants: Patients (n = 1048) with DME, best-corrected visual acuity (BCVA) of 20/50 to 20/200 Snellen equivalent, and central retinal thickness (CRT) of ≥300 μm by optical coherence tomography.
Methods: Patients were randomized in a 1:1:1 ratio to study treatment with DEX implant 0.7 mg, DEX implant 0.35 mg, or sham procedure and followed for 3 years (or 39 months for patients treated at month 36) at ≤40 scheduled visits. Patients who met retreatment eligibility criteria could be retreated no more often than every 6 months.
Main Outcome Measures: The predefined primary efficacy endpoint for the United States Food and Drug Administration was achievement of ≥15-letter improvement in BCVA from baseline at study end. Safety measures included adverse events and intraocular pressure (IOP).
Results: Mean number of treatments received over 3 years was 4.1, 4.4, and 3.3 with DEX implant 0.7 mg, DEX implant 0.35 mg, and sham, respectively. The percentage of patients with ≥15-letter improvement in BCVA from baseline at study end was greater with DEX implant 0.7 mg (22.2%) and DEX implant 0.35 mg (18.4%) than sham (12.0%; P ≤ 0.018). Mean average reduction in CRT from baseline was greater with DEX implant 0.7 mg (−111.6 μm) and DEX implant 0.35 mg (−107.9 μm) than sham (−41.9 μm; P < 0.001). Rates of cataract-related adverse events in phakic eyes were 67.9%, 64.1%, and 20.4% in the DEX implant 0.7 mg, DEX implant 0.35 mg, and sham groups, respectively. Increases in IOP were usually controlled with medication or no therapy; only 2 patients (0.6%) in the DEX implant 0.7 mg group and 1 (0.3%) in the DEX implant 0.35 mg group required trabeculectomy.
Conclusions: The DEX implant 0.7 mg and 0.35 mg met the primary efficacy endpoint for improvement in BCVA. The safety profile was acceptable and consistent with previous reports.
Design: Two randomized, multicenter, masked, sham-controlled, phase III clinical trials with identical protocols were conducted. Data were pooled for analysis.
Participants: Patients (n = 1048) with DME, best-corrected visual acuity (BCVA) of 20/50 to 20/200 Snellen equivalent, and central retinal thickness (CRT) of ≥300 μm by optical coherence tomography.
Methods: Patients were randomized in a 1:1:1 ratio to study treatment with DEX implant 0.7 mg, DEX implant 0.35 mg, or sham procedure and followed for 3 years (or 39 months for patients treated at month 36) at ≤40 scheduled visits. Patients who met retreatment eligibility criteria could be retreated no more often than every 6 months.
Main Outcome Measures: The predefined primary efficacy endpoint for the United States Food and Drug Administration was achievement of ≥15-letter improvement in BCVA from baseline at study end. Safety measures included adverse events and intraocular pressure (IOP).
Results: Mean number of treatments received over 3 years was 4.1, 4.4, and 3.3 with DEX implant 0.7 mg, DEX implant 0.35 mg, and sham, respectively. The percentage of patients with ≥15-letter improvement in BCVA from baseline at study end was greater with DEX implant 0.7 mg (22.2%) and DEX implant 0.35 mg (18.4%) than sham (12.0%; P ≤ 0.018). Mean average reduction in CRT from baseline was greater with DEX implant 0.7 mg (−111.6 μm) and DEX implant 0.35 mg (−107.9 μm) than sham (−41.9 μm; P < 0.001). Rates of cataract-related adverse events in phakic eyes were 67.9%, 64.1%, and 20.4% in the DEX implant 0.7 mg, DEX implant 0.35 mg, and sham groups, respectively. Increases in IOP were usually controlled with medication or no therapy; only 2 patients (0.6%) in the DEX implant 0.7 mg group and 1 (0.3%) in the DEX implant 0.35 mg group required trabeculectomy.
Conclusions: The DEX implant 0.7 mg and 0.35 mg met the primary efficacy endpoint for improvement in BCVA. The safety profile was acceptable and consistent with previous reports.
Original language | English |
---|---|
Pages (from-to) | 1904-1914 |
Number of pages | 11 |
Journal | Ophthalmology |
Volume | 121 |
Issue number | 10 |
Early online date | 4 Jun 2014 |
DOIs | |
Publication status | Published - 1 Oct 2014 |