Tibetan Plateau amplification of climate extremes under global warming of 1.5 °C, 2 °C and 3 °C

Qinglong You, Fangying Wu, Liuchen Shen, Nick Pepin, Zhihong Jiang, Shichang Kang

Research output: Contribution to journalArticlepeer-review

100 Downloads (Pure)


Global warming may increase the frequency of climate extremes, but systematic examinations at different temperature thresholds are unknown over the Tibetan Plateau (TP). Changes in surface temperature and precipitation extreme indices derived from a multi-model ensemble mean (MMEM) of the Coupled Model Inter-comparison Project Phase 5 (CMIP5) models are examined under global warming of 1.5 °C (RCP2.6), 2 °C (RCP4.5) and 3 °C (RCP8.5) above pre-industrial levels. The TP amplification of future temperature and precipitation changes is evident for all three scenarios, with greater trend magnitudes in extreme indices than those for the whole China, regions between 25°N and 40°N, Northern Hemisphere (land only), Northern Hemisphere and the global mean. The TP amplification is also projected to intensify in each scenario, resulting in faster changes in intensity, duration and frequency of climate extremes. There appears to be greater difference for precipitation-based indices between 2 °C and 3 °C than for temperature, and the differences between 1.5 °C and 2 °C are less dramatic. Overall changes in climate extremes at 2 °C are greater than at 1.5 °C, but differences are less discernible between 3 °C and 2 °C. The Kolmogorov-Smirnov test between simulated and scaled temperature distributions shows that accelerated warming over the TP from 1.5 °C to 2 °C follows a broadly linear response, but the nonlinearity occurs between 2 °C and 3 °C. This suggests that the rate of warming might make a large difference to the future TP amplification at different thresholds.
Original languageEnglish
Article number103261
JournalGlobal and Planetary Change
Early online date19 Jun 2020
Publication statusEarly online - 19 Jun 2020


Dive into the research topics of 'Tibetan Plateau amplification of climate extremes under global warming of 1.5 °C, 2 °C and 3 °C'. Together they form a unique fingerprint.

Cite this