Traction of 3D and 4D printing in the healthcare industry, from drug discovery and analysis to regenerative medicine

Karim Osouli-Bostanabad, Tahereh Masalehdan, Robert M. I. Kapsa, Anita Quigley, Katerina Lalatsa, Kiara F. Bruggeman, Stephanie J. Franks, Richard J. Williams, David Nisbet

Research output: Contribution to journalLiterature reviewpeer-review

Abstract

Three-dimensional (3D) printing and 3D bioprinting are promising technologies for a broad range of healthcare applications, from frontier regenerative medicine and tissue engineering therapies through to pharmaceutical advancements, yet must overcome the challenges of biocompatibility and resolution. Through comparison of traditional biofabrication methods with 3D (bio)printing, this review highlights the promise of 3D printing for the production of on-demand, personalized and complex products that enhance the accessibility, effectiveness, and safety of drug therapies and delivery systems. In addition, this review describes the capacity of 3D bioprinting to fabricate patient-specific tissues and living cell systems (e.g. vascular networks, organs, muscles, and skeletal systems), as well as its applications in delivery of cells and genes, microfluidics and organon- chip constructs. This review summarises how tailoring selected parameters (i.e. accurately selecting appropriate printing method, materials and printing parameters based on the desired application and behavior) can better facilitate the development of optimised 3D-printed products, and how dynamic 4D-printed strategies (printing materials designed to change with time or stimulus) may be deployed to overcome many of the inherent limitations of conventional 3Dprinted technologies. Comprehensive insights into a critical perspective of the future of 4D bioprinting, crucial requirements for 4D printing including programmability of a material, multimaterial printing methods, and precise designs for meticulous transformations or even clinical applications are also given.
Original languageEnglish
JournalACS Biomaterials Science and Engineering
Early online date13 Jun 2022
DOIs
Publication statusEarly online - 13 Jun 2022

Keywords

  • bioprinting
  • 3D-printed technology
  • 4D-printing technology
  • microfluidics

Fingerprint

Dive into the research topics of 'Traction of 3D and 4D printing in the healthcare industry, from drug discovery and analysis to regenerative medicine'. Together they form a unique fingerprint.

Cite this