Training object detectors from scratch: an empirical study in the era of vision transformer

Weixiang Hong*, Wang Ren, Jiangwei Lao, Lele Xie, Liheng Zhong, Jian Wang, Jingdong Chen, Honghai Liu, Wei Chu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Downloads (Pure)

Abstract

Modeling in computer vision has long been dominated by convolutional neural networks (CNNs). Recently, in light of the excellent performance of self-attention mechanism in the language field, transformers tailored for visual data have drawn significant attention and triumphed over CNNs in various vision tasks. These vision transformers heavily rely on large-scale pre-training to achieve competitive accuracy, which not only hinders the freedom of architectural design in downstream tasks like object detection, but also causes learning bias and domain mismatch in the fine-tuning stages. To this end, we aim to get rid of the “pre-train and fine-tune” paradigm of vision transformer and train transformer based object detector from scratch. Some earlier works in the CNNs era have successfully trained CNNs based detectors without pre-training, unfortunately, their findings do not generalize well when the backbone is switched from CNNs to a vision transformer. Instead of proposing a specific vision transformer based detector, in this work, our goal is to reveal the insights of training vision transformer based detectors from scratch. In particular, we expect those insights to help other researchers and practitioners, and inspire more interesting research in other fields, such as remote sensing, visual-linguistic pre-training, etc. One of the key findings is that both architectural changes and more epochs play critical roles in training vision transformer based detectors from scratch. Experiments on the MS COCO dataset demonstrate that vision transformer based detectors trained from scratch can also achieve similar performance to their counterparts with ImageNet pre-training.

Original languageEnglish
Number of pages14
JournalInternational Journal of Computer Vision
Early online date26 Feb 2024
DOIs
Publication statusEarly online - 26 Feb 2024

Keywords

  • convolutional neural networks
  • detection performance and efficiency
  • large-scale pre-training
  • object detection
  • training from scratch
  • vision transformer

Cite this