Abstract
Background/Objectives: The triple jump is included in the Paralympic Athletics competition. The aim of the research was to examine the relationship of the phase ratios and the inter-limb asymmetry in the spatiotemporal parameters of the approach run in Paralympic and international-level Class T46/T47 triple jumpers.
Methods: Eleven Class T46/T47 male athletes were recorded during the examined competitions. Step length (SL), frequency (SF), and average velocity (ASV) for the late approach run as well as the length and the percentage distribution of each jumping phase (hop, step, jump) were measured using a panning video analysis method. The inter-limb asymmetry was estimated using the symmetry angle.
Results: No significant inter-limb asymmetry was found (p > 0.05). In addition, SL, SF, and ASV were not different (p > 0.05) between the steps initiated from the ipsilateral and the contralateral leg regarding the impaired arm. However, the direction of asymmetry for SF was towards the ipsilateral leg to the impaired arm in the majority of the examined athletes. The maximum speed of the approach was correlated with the triple jump distance and the magnitude of asymmetry for AVS was correlated with the vertical take-off velocity and angle for the step.
Conclusions: Since the distance of the triple jump related with the peak approach speed added the negative correlation of peak approach speed with the magnitude of the symmetry angle for SL, it is suggested to minimize the asymmetries in the step characteristics during the approach run to improve triple jump performance in Class T46/T47 jumpers.
Methods: Eleven Class T46/T47 male athletes were recorded during the examined competitions. Step length (SL), frequency (SF), and average velocity (ASV) for the late approach run as well as the length and the percentage distribution of each jumping phase (hop, step, jump) were measured using a panning video analysis method. The inter-limb asymmetry was estimated using the symmetry angle.
Results: No significant inter-limb asymmetry was found (p > 0.05). In addition, SL, SF, and ASV were not different (p > 0.05) between the steps initiated from the ipsilateral and the contralateral leg regarding the impaired arm. However, the direction of asymmetry for SF was towards the ipsilateral leg to the impaired arm in the majority of the examined athletes. The maximum speed of the approach was correlated with the triple jump distance and the magnitude of asymmetry for AVS was correlated with the vertical take-off velocity and angle for the step.
Conclusions: Since the distance of the triple jump related with the peak approach speed added the negative correlation of peak approach speed with the magnitude of the symmetry angle for SL, it is suggested to minimize the asymmetries in the step characteristics during the approach run to improve triple jump performance in Class T46/T47 jumpers.
Original language | English |
---|---|
Pages (from-to) | 605-617 |
Journal | Biomechanics |
Volume | 4 |
Issue number | 4 |
Early online date | 2 Oct 2024 |
DOIs | |
Publication status | Early online - 2 Oct 2024 |
Keywords
- paralympic events
- track and field
- sport performance
- upper limb impairment
- inter-limb asymmetry
- laterality
- biomechanical analysis
- step kinematics