Ultrasound-assisted green economic synthesis of hydroxyapatite nanoparticles using eggshell biowaste and study of mechanical and biological properties for orthopedic applications

Vijay H. Ingole, Kamal Hany Hussein, Anil A. Kashale, Kalyani Ghule, Tomaž Vuherer, Vanja Kokol, Jia-Yaw Chang, Yong-Chien Ling, Aruna Vinchurkar, Hom Dhakal, Anil V. Ghule

    Research output: Contribution to journalArticlepeer-review

    453 Downloads (Pure)


    Nanostructured hydroxyapatite (HAp) is the most favorable candidate biomaterial for bone tissue engineering because of its bioactive and osteoconductive properties. Herein, we report for the first time ultrasound-assisted facile and economic approach for the synthesis of nanocrystalline hydroxyapatite (Ca10(PO4)6(OH)2) using recycled eggshell biowaste referred as EHAp. The process involves the reaction of eggshell biowaste as a source of calcium and ammonium dihydrogen orthophosphate as a phosphate source. Ultrasound-mediated chemical synthesis of hydroxyapatite (HAp) is also carried out using similar approach wherein commercially available calcium hydroxide and ammonium dihydrogen orthophosphate were used as calcium and phosphate precursors, respectively and referred as CHAp for better comparison. The prepared materials were characterized by X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy to determine crystal structure, particle morphology, and the presence of chemical functional groups. The nanocrystalline EHAp and CHAp were observed to have spherical morphology with uniform size distribution. Furthermore, mechanical properties such as Vickers hardness, fracture toughness, and compression tests have been studied of the EHAp and CHAp samples showing promising results. Mechanical properties show the influence of calcination at 600°C EHAp and CHAp material. After calcination, in the case of EHAp material an average hardness, mechanical strength, elastic modulus, and fracture toughness were found 552 MPa, 46.6 MPa, 2824 MPa, and 3.85 MPa m1/2, respectively, while in the case of CHAp 618 MPa, 47.5 MPa, 2071 MPa, and 3.13 MPa m1/2. In vitro cell studies revealed that the EHAp and CHAp nanoparticles significantly increased the attachment and proliferation of the hFOB cells. Here, we showed that EHAp and CHAp provide promising biocompatible materials that do not affect the cell viability and proliferation with enhancing the osteogenic activity of osteoblasts. Moreover, hFOB cells are found to express Osteocalcin, Osteopontin, Collagen I, Osteonectin, BMP-2 on the EHAp and CHAp bone graft. This study demonstrates the formation of pure nanocrystalline HAp with promising properties justifying the fact that the eggshell biowaste could be successfully used for the synthesis of HAp with good mechanical and osteogenic properties. These findings may have significant implications for designing of biomaterial for use in orthopedic tissue regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2017.
    Original languageEnglish
    JournalJournal of Biomedical Materials Research Part A
    Early online date7 Jul 2017
    Publication statusEarly online - 7 Jul 2017


    Dive into the research topics of 'Ultrasound-assisted green economic synthesis of hydroxyapatite nanoparticles using eggshell biowaste and study of mechanical and biological properties for orthopedic applications'. Together they form a unique fingerprint.

    Cite this