Visual saliency detection by integrating spatial position prior of object with background cues

Muwei Jian, Jing Wang, Hui Yu, Guodong Wang, Xiangjing Meng, Lu Yang, Junyu Dong, Yilong Yin

Research output: Contribution to journalArticlepeer-review

32 Downloads (Pure)


In this paper, we propose an effective visual saliency-detection model based on spatial position prior of attractive objects and sparse background features. Firstly, since multi-orientation features are among the key visual stimuli in the human visual system (HVS) to perceive object spatial information, discrete wavelet frame transform (DWDT) is applied to extract directionality characteristics for calculating the centoid of remarkable objects in the original image. Then, the color contrast feature is used to represent the physical characteristics of salient objects. Thirdly, in order to explore and utilize the background features of an input image, sparse dictionary learning is performed to statistically analyze and estimate the background feature map. Finally, three distinctive cues of the directional feature including the color contrast feature and the background feature are combined to generate a final robust saliency map. Experimental results on three widely used image datasets show that our proposed method is effective and efficient, and is superior to other state-of-the-art saliency-detection models.
Original languageEnglish
Article number114219
Number of pages11
JournalExpert Systems with Applications
Early online date24 Jan 2021
Publication statusPublished - 15 Apr 2021


  • discrete wavelet transform
  • saliency detection
  • background features
  • position prior


Dive into the research topics of 'Visual saliency detection by integrating spatial position prior of object with background cues'. Together they form a unique fingerprint.

Cite this