Abstract
Intralogistics operations in automotive OEMs increasingly confront problems ofovercomplexity caused by a customer-centred production that requires customisation and, thus, high product variability, short-notice changes in orders and the handling of an overwhelming number of parts. To alleviate the pressure on intralogistics without sacrificing performance objectives, the speed and flexibility of logistical operations have to be increased. One approach to this is to utilise three-dimensional space through drone technology. This doctoral thesis aims at establishing a framework for implementing aerial drones in automotive OEM logistic operations.
As of yet, there is no research on implementing drones in automotive OEM logistic operations. To contribute to filling this gap, this thesis develops a framework for Drone Implementation in Automotive Logistics Operations (DIALOOP) that allows for a close interaction between the strategic and the operative level and can lead automotive companies through a decision and selection process regarding drone technology.
A preliminary version of the framework was developed on a theoretical basis and was then revised using qualitative-empirical data from semi-structured interviews with two groups of experts, i.e. drone experts and automotive experts. The drone expert interviews contributed a current overview of drone capabilities. The automotive experts interview were used to identify intralogistics operations in which drones can be implemented along with the performance measures that can be improved by drone usage. Furthermore, all interviews explored developments and changes with a foreseeable influence on drone implementation.
The revised framework was then validated using participant validation interviews with automotive experts.
The finalised framework defines a step-by-step process leading from strategic decisions and considerations over the identification of logistics processes suitable for drone implementation and the relevant performance measures to the choice of appropriate drone types based on a drone classification specifically developed in this thesis for an automotive context.
Date of Award | Dec 2020 |
---|---|
Original language | English |
Awarding Institution |
|
Supervisor | Deborah Margaret Reed (Supervisor) & Jana Ries (Supervisor) |