Skip to content

3D printed spherical mini-tablets: geometry versus composition effects in controlling dissolution from personalised solid dosage forms

Research output: Contribution to journalArticlepeer-review

  • Sejad Ayyoubi
  • Jose R. Cerda
  • Raquel Fernandez-Garcia
  • Peter Knief
  • Dr Katerina Lalatsa
  • Anne Marie Healy
  • Dolores Remedios Serrano Lopez
Oral dosage forms are by far the most common prescription and over-the-counter pharmaceutical dosage forms used worldwide. However, many patients suffer from adverse effects caused by their use of “one-size fits all” mass produced commercially available solid dosage forms, whereby they do not receive dedicated medication or dosage adjusted to their specific needs. The development of 3D printing paves the way for personalised medicine. This work focuses on personalised therapies for hypertensive patients using nifedipine as the model drug. 3D printed full solid and channelled spherical mini-tablets with enhanced surface area (1.6-fold higher) were printed using modified PVA commercial filaments loaded by passive diffusion (PD), and Kollidon VA64 (KVA) and ethylcellulose (EC) based filaments prepared by hot-melt extrusion (HME). Drug loading ranged from 3.7% to 60% based on the employed technique, with a 13-fold higher drug loading achieved with the HME compared to PD. Composition was found to have a more significant impact on drug dissolution than geometry and surface area. Both KVA and EC-based formulations exhibited a biphasic zero-order drugrelease profile. Physicochemical characterization revealed that nifedipine was in the amorphous form in the KVA-based end-products which led to a greater dissolution control over a 24 h period compared to the EC-based formulations that exhibited low levels of crystallinity by PXRD. The proposed 3D printed spherical mini-tablets provide a versatile technology for personalised solid dosage forms with high drug loading and dissolution control, easily adaptable to patient and disease needs.
Original languageEnglish
JournalInternational Journal of Pharmaceutics
Publication statusAccepted for publication - 1 Feb 2021


  • 3D_printing_IJP_2021

    Rights statement: The embargo end date of 2050 is a temporary measure until we know the publication date. Once we know the publication date the full text of this article will be able to view shortly afterwards.

    Accepted author manuscript (Post-print), 2.76 MB, PDF document

    Due to publisher’s copyright restrictions, this document is not freely available to download from this website until: 1/01/50

    Licence: CC BY-NC-ND

Relations Get citation (various referencing formats)

ID: 25202718