Skip to content
Back to outputs

Brane-world gravity

Research output: Contribution to journalReview articlepeer-review

Standard

Brane-world gravity. / Maartens, Roy; Koyama, Kazuya.

In: Living Reviews in Relativity, Vol. 13, 5, 01.01.2010.

Research output: Contribution to journalReview articlepeer-review

Harvard

Maartens, R & Koyama, K 2010, 'Brane-world gravity', Living Reviews in Relativity, vol. 13, 5. https://doi.org/10.12942/lrr-2010-5

APA

Vancouver

Maartens R, Koyama K. Brane-world gravity. Living Reviews in Relativity. 2010 Jan 1;13. 5. https://doi.org/10.12942/lrr-2010-5

Author

Maartens, Roy ; Koyama, Kazuya. / Brane-world gravity. In: Living Reviews in Relativity. 2010 ; Vol. 13.

Bibtex

@article{c7bd48343fc94182bc2cff75b2da1fb3,
title = "Brane-world gravity",
abstract = "The observable universe could be a 1+3-surface (the {"}brane{"}) embedded in a 1+3+d-dimensional spacetime (the {"}bulk{"}), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the d extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (∼TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity {"}leaks{"} into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall-Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at low energies - the 5-dimensional Dvali-Gabadadze-Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.",
author = "Roy Maartens and Kazuya Koyama",
year = "2010",
month = jan,
day = "1",
doi = "10.12942/lrr-2010-5",
language = "English",
volume = "13",
journal = "Living Reviews in Relativity",
issn = "1433-8351",
publisher = "Albert Einstein Institut",

}

RIS

TY - JOUR

T1 - Brane-world gravity

AU - Maartens, Roy

AU - Koyama, Kazuya

PY - 2010/1/1

Y1 - 2010/1/1

N2 - The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+d-dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the d extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (∼TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall-Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at low energies - the 5-dimensional Dvali-Gabadadze-Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.

AB - The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+d-dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the d extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (∼TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall-Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at low energies - the 5-dimensional Dvali-Gabadadze-Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.

UR - http://www.scopus.com/inward/record.url?scp=77957574872&partnerID=8YFLogxK

U2 - 10.12942/lrr-2010-5

DO - 10.12942/lrr-2010-5

M3 - Review article

AN - SCOPUS:77957574872

VL - 13

JO - Living Reviews in Relativity

JF - Living Reviews in Relativity

SN - 1433-8351

M1 - 5

ER -

ID: 11437818