Skip to content

CMIB: unsupervised image object categorization in multiple visual contexts

Research output: Contribution to journalArticlepeer-review

Object categorization in images is fundamental to various industrial areas, such as automated visual inspection, fast image retrieval and intelligent surveillance. Most existing methods treat visual features (e.g., scale-invariant feature transform, SIFT) as content information of the objects, while regarding image tags as its contextual information. However, the image tags can hardly been acquired in complete unsupervised settings, especially when the image volume is too large to be marked. In this work, we propose a novel and effective method called contextual multivariate information bottleneck (CMIB) to discover object category in totally unlabeled images. Unlike treating image tags as the object’s context, CMIB adopts one feature representation of the images to characterize the object’s content information, while regarding the auxiliary clusterings obtained by other multiple related features as its visual contexts. In the proposed CMIB framework, we borrow the idea of the data compression procedure for object category discovery, which aims to squeeze the source image collection into its compressed representation as much as possible, while maximally preserving the correlative information between the content and visual contexts. Specifically, two Bayesian networks are built to characterize the relationships between data compression and information preservation. Moreover, a sequential informationtheoretic optimization is proposed to ensure the convergence of the CMIB objective function. Extensive experiments on five real-world image data sets show that the proposed method can significantly outperform the state-of-the-art baselines.
Original languageEnglish
Article number0
Pages (from-to)3974-3986
Number of pages13
JournalIEEE Transactions on Industrial Informatics
Issue number6
Early online date3 Sep 2019
Publication statusPublished - 1 Jun 2020


  • Unsupervised Image Object Categorization_pp

    Rights statement: © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

    Accepted author manuscript (Post-print), 1.12 MB, PDF document

Related information

Relations Get citation (various referencing formats)

ID: 15859476