Skip to content
Back to outputs

Cosmological lensing ratios with DES Y1, SPT and Planck

Research output: Contribution to journalArticlepeer-review

Standard

Cosmological lensing ratios with DES Y1, SPT and Planck. / Dark Energy Survey Collaboration; South Pole Telescope Collaboration ; Bacon, D.; Mawdsley, B.; Avila, S.; Thomas, D.

In: Monthly Notices of the Royal Astronomical Society, 14.05.2019.

Research output: Contribution to journalArticlepeer-review

Harvard

Dark Energy Survey Collaboration, South Pole Telescope Collaboration, Bacon, D, Mawdsley, B, Avila, S & Thomas, D 2019, 'Cosmological lensing ratios with DES Y1, SPT and Planck', Monthly Notices of the Royal Astronomical Society. https://doi.org/10.1093/mnras/stz1309

APA

Dark Energy Survey Collaboration, South Pole Telescope Collaboration, Bacon, D., Mawdsley, B., Avila, S., & Thomas, D. (2019). Cosmological lensing ratios with DES Y1, SPT and Planck. Monthly Notices of the Royal Astronomical Society. https://doi.org/10.1093/mnras/stz1309

Vancouver

Dark Energy Survey Collaboration, South Pole Telescope Collaboration, Bacon D, Mawdsley B, Avila S, Thomas D. Cosmological lensing ratios with DES Y1, SPT and Planck. Monthly Notices of the Royal Astronomical Society. 2019 May 14. https://doi.org/10.1093/mnras/stz1309

Author

Dark Energy Survey Collaboration ; South Pole Telescope Collaboration ; Bacon, D. ; Mawdsley, B. ; Avila, S. ; Thomas, D. / Cosmological lensing ratios with DES Y1, SPT and Planck. In: Monthly Notices of the Royal Astronomical Society. 2019.

Bibtex

@article{6106069fd33a4b5b88eedbb9a834e2bb,
title = "Cosmological lensing ratios with DES Y1, SPT and Planck",
abstract = "Correlations between tracers of the matter density field and gravitational lensing are sensitive to the evolution of the matter power spectrum and the expansion rate across cosmic time. Appropriately defined ratios of such correlation functions, on the other hand, depend only on the angular diameter distances to the tracer objects and to the gravitational lensing source planes. Because of their simple cosmological dependence, such ratios can exploit available signal-to-noise down to small angular scales, even where directly modeling the correlation functions is difficult. We present a measurement of lensing ratios using galaxy position and lensing data from the Dark Energy Survey, and CMB lensing data from the South Pole Telescope and Planck, obtaining the highest precision lensing ratio measurements to date. Relative to the concordance ΛCDM model, we find a best fit lensing ratio amplitude of A = 1.1 ± 0.1. We use the ratio measurements to generate cosmological constraints, focusing on the curvature parameter. We demonstrate that photometrically selected galaxies can be used to measure lensing ratios, and argue that future lensing ratio measurements with data from a combination of LSST and Stage-4 CMB experiments can be used to place interesting cosmological constraints, even after considering the systematic uncertainties associated with photometric redshift and galaxy shear estimation.",
keywords = "astro-ph.CO",
author = "{Dark Energy Survey Collaboration} and {South Pole Telescope Collaboration} and J. Prat and Baxter, {E. J.} and T. Shin and C. S{\'a}nchez and C. Chang and B. Jain and R. Miquel and A. Alarcon and D. Bacon and Bernstein, {G. M.} and R. Cawthon and Crawford, {T. M.} and C. Davis and Vicente, {J. De} and S. Dodelson and Eifler, {T. F.} and O. Friedrich and M. Gatti and D. Gruen and Hartley, {W. G.} and Holder, {G. P.} and B. Hoyle and M. Jarvis and E. Krause and N. MacCrann and B. Mawdsley and A. Nicola and Y. Omori and A. Pujol and Rau, {M. M.} and Reichardt, {C. L.} and S. Samuroff and E. Sheldon and Troxel, {M. A.} and P. Vielzeuf and J. Zuntz and Abbott, {T. M. C.} and Abdalla, {F. B.} and J. Annis and S. Avila and K. Aylor and Benson, {B. A.} and E. Bertin and Bleem, {L. E.} and D. Brooks and Burke, {D. L.} and Carlstrom, {J. E.} and Kind, {M. Carrasco} and J. Carretero and D. Thomas",
year = "2019",
month = may,
day = "14",
doi = "10.1093/mnras/stz1309",
language = "English",
journal = "MNRAS",
issn = "0035-8711",
publisher = "Oxford University Press",

}

RIS

TY - JOUR

T1 - Cosmological lensing ratios with DES Y1, SPT and Planck

AU - Dark Energy Survey Collaboration

AU - South Pole Telescope Collaboration

AU - Prat, J.

AU - Baxter, E. J.

AU - Shin, T.

AU - Sánchez, C.

AU - Chang, C.

AU - Jain, B.

AU - Miquel, R.

AU - Alarcon, A.

AU - Bacon, D.

AU - Bernstein, G. M.

AU - Cawthon, R.

AU - Crawford, T. M.

AU - Davis, C.

AU - Vicente, J. De

AU - Dodelson, S.

AU - Eifler, T. F.

AU - Friedrich, O.

AU - Gatti, M.

AU - Gruen, D.

AU - Hartley, W. G.

AU - Holder, G. P.

AU - Hoyle, B.

AU - Jarvis, M.

AU - Krause, E.

AU - MacCrann, N.

AU - Mawdsley, B.

AU - Nicola, A.

AU - Omori, Y.

AU - Pujol, A.

AU - Rau, M. M.

AU - Reichardt, C. L.

AU - Samuroff, S.

AU - Sheldon, E.

AU - Troxel, M. A.

AU - Vielzeuf, P.

AU - Zuntz, J.

AU - Abbott, T. M. C.

AU - Abdalla, F. B.

AU - Annis, J.

AU - Avila, S.

AU - Aylor, K.

AU - Benson, B. A.

AU - Bertin, E.

AU - Bleem, L. E.

AU - Brooks, D.

AU - Burke, D. L.

AU - Carlstrom, J. E.

AU - Kind, M. Carrasco

AU - Carretero, J.

AU - Thomas, D.

PY - 2019/5/14

Y1 - 2019/5/14

N2 - Correlations between tracers of the matter density field and gravitational lensing are sensitive to the evolution of the matter power spectrum and the expansion rate across cosmic time. Appropriately defined ratios of such correlation functions, on the other hand, depend only on the angular diameter distances to the tracer objects and to the gravitational lensing source planes. Because of their simple cosmological dependence, such ratios can exploit available signal-to-noise down to small angular scales, even where directly modeling the correlation functions is difficult. We present a measurement of lensing ratios using galaxy position and lensing data from the Dark Energy Survey, and CMB lensing data from the South Pole Telescope and Planck, obtaining the highest precision lensing ratio measurements to date. Relative to the concordance ΛCDM model, we find a best fit lensing ratio amplitude of A = 1.1 ± 0.1. We use the ratio measurements to generate cosmological constraints, focusing on the curvature parameter. We demonstrate that photometrically selected galaxies can be used to measure lensing ratios, and argue that future lensing ratio measurements with data from a combination of LSST and Stage-4 CMB experiments can be used to place interesting cosmological constraints, even after considering the systematic uncertainties associated with photometric redshift and galaxy shear estimation.

AB - Correlations between tracers of the matter density field and gravitational lensing are sensitive to the evolution of the matter power spectrum and the expansion rate across cosmic time. Appropriately defined ratios of such correlation functions, on the other hand, depend only on the angular diameter distances to the tracer objects and to the gravitational lensing source planes. Because of their simple cosmological dependence, such ratios can exploit available signal-to-noise down to small angular scales, even where directly modeling the correlation functions is difficult. We present a measurement of lensing ratios using galaxy position and lensing data from the Dark Energy Survey, and CMB lensing data from the South Pole Telescope and Planck, obtaining the highest precision lensing ratio measurements to date. Relative to the concordance ΛCDM model, we find a best fit lensing ratio amplitude of A = 1.1 ± 0.1. We use the ratio measurements to generate cosmological constraints, focusing on the curvature parameter. We demonstrate that photometrically selected galaxies can be used to measure lensing ratios, and argue that future lensing ratio measurements with data from a combination of LSST and Stage-4 CMB experiments can be used to place interesting cosmological constraints, even after considering the systematic uncertainties associated with photometric redshift and galaxy shear estimation.

KW - astro-ph.CO

U2 - 10.1093/mnras/stz1309

DO - 10.1093/mnras/stz1309

M3 - Article

JO - MNRAS

JF - MNRAS

SN - 0035-8711

ER -

ID: 14113716