Skip to content
Back to outputs

Dark Energy Survey Year 1 Results: the lensing imprint of cosmic voids on the Cosmic Microwave Background

Research output: Contribution to journalArticlepeer-review

Standard

Dark Energy Survey Year 1 Results : the lensing imprint of cosmic voids on the Cosmic Microwave Background. / Dark Energy Survey Collaboration; Nadathur, S.; Avila, S.; Thomas, D.

In: Monthly Notices of the Royal Astronomical Society, 22.10.2020.

Research output: Contribution to journalArticlepeer-review

Harvard

Dark Energy Survey Collaboration, Nadathur, S, Avila, S & Thomas, D 2020, 'Dark Energy Survey Year 1 Results: the lensing imprint of cosmic voids on the Cosmic Microwave Background', Monthly Notices of the Royal Astronomical Society. https://doi.org/10.1093/mnras/staa3231

APA

Dark Energy Survey Collaboration, Nadathur, S., Avila, S., & Thomas, D. (2020). Dark Energy Survey Year 1 Results: the lensing imprint of cosmic voids on the Cosmic Microwave Background. Monthly Notices of the Royal Astronomical Society. https://doi.org/10.1093/mnras/staa3231

Vancouver

Dark Energy Survey Collaboration, Nadathur S, Avila S, Thomas D. Dark Energy Survey Year 1 Results: the lensing imprint of cosmic voids on the Cosmic Microwave Background. Monthly Notices of the Royal Astronomical Society. 2020 Oct 22. https://doi.org/10.1093/mnras/staa3231

Author

Dark Energy Survey Collaboration ; Nadathur, S. ; Avila, S. ; Thomas, D. / Dark Energy Survey Year 1 Results : the lensing imprint of cosmic voids on the Cosmic Microwave Background. In: Monthly Notices of the Royal Astronomical Society. 2020.

Bibtex

@article{d84d16b9d3f04f40a232ab86a22a5583,
title = "Dark Energy Survey Year 1 Results: the lensing imprint of cosmic voids on the Cosmic Microwave Background",
abstract = "Cosmic voids gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint on degree scales. We use the simulated CMB lensing convergence map from the MICE N-body simulation to calibrate our detection strategy for a given void definition and galaxy tracer density. We then identify cosmic voids in DES Year 1 data and stack the Planck 2015 lensing convergence map on their locations, probing the consistency of simulated and observed void lensing signals. When fixing the shape of the stacked convergence profile to that calibrated from simulations, we find imprints at the 3σ significance level for various analysis choices. The best measurement strategies based on the MICE calibration process yield S/N ≈ 4 for DES Y1, and the best-fit amplitude recovered from the data is consistent with expectations from MICE (A ≈ 1). Given these results as well as the agreement between them and N-body simulations, we conclude that the previously reported excess integrated Sachs-Wolfe (ISW) signal associated with cosmic voids in DES Y1 has no counterpart in the Planck CMB lensing map.",
keywords = "astro-ph.CO, large-scale structure of Universe, cosmic background radiation, RCUK, STFC",
author = "{Dark Energy Survey Collaboration} and P. Vielzeuf and A. Kov{\'a}cs and U. Demirbozan and P. Fosalba and E. Baxter and N. Hamaus and D. Huterer and R. Miquel and S. Nadathur and G. Pollina and C. S{\'a}nchez and L. Whiteway and Abbott, {T. M. C.} and S. Allam and J. Annis and S. Avila and D. Brooks and Burke, {D. L.} and Rosell, {A. Carnero} and Kind, {M. Carrasco} and J. Carretero and R. Cawthon and M. Costanzi and Costa, {L. N. da} and Vicente, {J. De} and S. Desai and Diehl, {H. T.} and P. Doel and Eifler, {T. F.} and S. Everett and B. Flaugher and J. Frieman and J. Garc{\'i}a-Bellido and E. Gaztanaga and Gerdes, {D. W.} and D. Gruen and Gruendl, {R. A.} and J. Gschwend and G. Gutierrez and Hartley, {W. G.} and Hollowood, {D. L.} and K. Honscheid and James, {D. J.} and K. Kuehn and N. Kuropatkin and O. Lahav and M. Lima and Maia, {M. A. G.} and M. March and D. Thomas",
note = "16 pages, 13 figures",
year = "2020",
month = oct,
day = "22",
doi = "10.1093/mnras/staa3231",
language = "English",
journal = "MNRAS",
issn = "0035-8711",
publisher = "Oxford University Press",

}

RIS

TY - JOUR

T1 - Dark Energy Survey Year 1 Results

T2 - the lensing imprint of cosmic voids on the Cosmic Microwave Background

AU - Dark Energy Survey Collaboration

AU - Vielzeuf, P.

AU - Kovács, A.

AU - Demirbozan, U.

AU - Fosalba, P.

AU - Baxter, E.

AU - Hamaus, N.

AU - Huterer, D.

AU - Miquel, R.

AU - Nadathur, S.

AU - Pollina, G.

AU - Sánchez, C.

AU - Whiteway, L.

AU - Abbott, T. M. C.

AU - Allam, S.

AU - Annis, J.

AU - Avila, S.

AU - Brooks, D.

AU - Burke, D. L.

AU - Rosell, A. Carnero

AU - Kind, M. Carrasco

AU - Carretero, J.

AU - Cawthon, R.

AU - Costanzi, M.

AU - Costa, L. N. da

AU - Vicente, J. De

AU - Desai, S.

AU - Diehl, H. T.

AU - Doel, P.

AU - Eifler, T. F.

AU - Everett, S.

AU - Flaugher, B.

AU - Frieman, J.

AU - García-Bellido, J.

AU - Gaztanaga, E.

AU - Gerdes, D. W.

AU - Gruen, D.

AU - Gruendl, R. A.

AU - Gschwend, J.

AU - Gutierrez, G.

AU - Hartley, W. G.

AU - Hollowood, D. L.

AU - Honscheid, K.

AU - James, D. J.

AU - Kuehn, K.

AU - Kuropatkin, N.

AU - Lahav, O.

AU - Lima, M.

AU - Maia, M. A. G.

AU - March, M.

AU - Thomas, D.

N1 - 16 pages, 13 figures

PY - 2020/10/22

Y1 - 2020/10/22

N2 - Cosmic voids gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint on degree scales. We use the simulated CMB lensing convergence map from the MICE N-body simulation to calibrate our detection strategy for a given void definition and galaxy tracer density. We then identify cosmic voids in DES Year 1 data and stack the Planck 2015 lensing convergence map on their locations, probing the consistency of simulated and observed void lensing signals. When fixing the shape of the stacked convergence profile to that calibrated from simulations, we find imprints at the 3σ significance level for various analysis choices. The best measurement strategies based on the MICE calibration process yield S/N ≈ 4 for DES Y1, and the best-fit amplitude recovered from the data is consistent with expectations from MICE (A ≈ 1). Given these results as well as the agreement between them and N-body simulations, we conclude that the previously reported excess integrated Sachs-Wolfe (ISW) signal associated with cosmic voids in DES Y1 has no counterpart in the Planck CMB lensing map.

AB - Cosmic voids gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint on degree scales. We use the simulated CMB lensing convergence map from the MICE N-body simulation to calibrate our detection strategy for a given void definition and galaxy tracer density. We then identify cosmic voids in DES Year 1 data and stack the Planck 2015 lensing convergence map on their locations, probing the consistency of simulated and observed void lensing signals. When fixing the shape of the stacked convergence profile to that calibrated from simulations, we find imprints at the 3σ significance level for various analysis choices. The best measurement strategies based on the MICE calibration process yield S/N ≈ 4 for DES Y1, and the best-fit amplitude recovered from the data is consistent with expectations from MICE (A ≈ 1). Given these results as well as the agreement between them and N-body simulations, we conclude that the previously reported excess integrated Sachs-Wolfe (ISW) signal associated with cosmic voids in DES Y1 has no counterpart in the Planck CMB lensing map.

KW - astro-ph.CO

KW - large-scale structure of Universe

KW - cosmic background radiation

KW - RCUK

KW - STFC

U2 - 10.1093/mnras/staa3231

DO - 10.1093/mnras/staa3231

M3 - Article

JO - MNRAS

JF - MNRAS

SN - 0035-8711

ER -

ID: 23349434