Skip to content

Email reply prediction: a machine learning approach

Research output: Chapter in Book/Report/Conference proceedingChapter (peer-reviewed)peer-review

Email has now become the most-used communication tool in the world and has also become the primary business productivity applications for most organizations and individuals. With the ever increasing popularity of emails, email over-load and prioritization becomes a major problem for many email users. Users spend a lot of time reading, replying and organizing their emails. To help users organize and prioritize their email messages, we propose a new framework; email reply prediction with unsupervised learning. The goal is to provide concise, highly structured and prioritized emails, thus saving the user from browsing through each email one by one and help to save time. In this paper, we discuss the features used to differentiate emails, show promising initial results with unsupervised machine learning model, and outline future directions for this work.
Original languageEnglish
Title of host publicationHuman interface and the management of information: information and Interaction
EditorsG. Salvendy, M. Smith
Place of PublicationBerlin
Number of pages10
ISBN (Print)9783642025587
Publication statusPublished - 2009

Publication series

NameLecture Notes in Computer Science
ISSN (Print)0302-9743

Related information

Relations Get citation (various referencing formats)

ID: 82956