Skip to content
Back to outputs

Inference from the small scales of cosmic shear with current and future Dark Energy Survey data

Research output: Contribution to journalArticle

Standard

Inference from the small scales of cosmic shear with current and future Dark Energy Survey data. / MacCrann, N.; Aleksić, J.; Amara, A.; Bridle, S. L.; Bruderer, C.; Chang, C.; Dodelson, S.; Eifler, T. F.; Huff, E. M.; Huterer, D.; Kacprzak, T.; Refregier, A.; Suchyta, E.; Wechsler, R. H.; Zuntz, J.; Abbott, T. M. C.; Allam, S.; Annis, J.; Armstrong, R.; Benoit-Lévy, A.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; Costa, L. N. da; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jarvis, M.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Marshall, J. L.; Thomas, D.; Dark Energy Survey Collaboration.

In: Monthly Notices of the Royal Astronomical Society, Vol. 465, No. 3, 03.2017, p. 2567-2583.

Research output: Contribution to journalArticle

Harvard

MacCrann, N, Aleksić, J, Amara, A, Bridle, SL, Bruderer, C, Chang, C, Dodelson, S, Eifler, TF, Huff, EM, Huterer, D, Kacprzak, T, Refregier, A, Suchyta, E, Wechsler, RH, Zuntz, J, Abbott, TMC, Allam, S, Annis, J, Armstrong, R, Benoit-Lévy, A, Brooks, D, Burke, DL, Rosell, AC, Kind, MC, Carretero, J, Castander, FJ, Crocce, M, Cunha, CE, Costa, LND, Desai, S, Diehl, HT, Dietrich, JP, Doel, P, Evrard, AE, Flaugher, B, Fosalba, P, Gerdes, DW, Goldstein, DA, Gruen, D, Gruendl, RA, Gutierrez, G, Honscheid, K, James, DJ, Jarvis, M, Krause, E, Kuehn, K, Kuropatkin, N, Lima, M, Marshall, JL, Thomas, D & Dark Energy Survey Collaboration 2017, 'Inference from the small scales of cosmic shear with current and future Dark Energy Survey data', Monthly Notices of the Royal Astronomical Society, vol. 465, no. 3, pp. 2567-2583. https://doi.org/10.1093/mnras/stw2849

APA

MacCrann, N., Aleksić, J., Amara, A., Bridle, S. L., Bruderer, C., Chang, C., Dodelson, S., Eifler, T. F., Huff, E. M., Huterer, D., Kacprzak, T., Refregier, A., Suchyta, E., Wechsler, R. H., Zuntz, J., Abbott, T. M. C., Allam, S., Annis, J., Armstrong, R., ... Dark Energy Survey Collaboration (2017). Inference from the small scales of cosmic shear with current and future Dark Energy Survey data. Monthly Notices of the Royal Astronomical Society, 465(3), 2567-2583. https://doi.org/10.1093/mnras/stw2849

Vancouver

MacCrann N, Aleksić J, Amara A, Bridle SL, Bruderer C, Chang C et al. Inference from the small scales of cosmic shear with current and future Dark Energy Survey data. Monthly Notices of the Royal Astronomical Society. 2017 Mar;465(3):2567-2583. https://doi.org/10.1093/mnras/stw2849

Author

MacCrann, N. ; Aleksić, J. ; Amara, A. ; Bridle, S. L. ; Bruderer, C. ; Chang, C. ; Dodelson, S. ; Eifler, T. F. ; Huff, E. M. ; Huterer, D. ; Kacprzak, T. ; Refregier, A. ; Suchyta, E. ; Wechsler, R. H. ; Zuntz, J. ; Abbott, T. M. C. ; Allam, S. ; Annis, J. ; Armstrong, R. ; Benoit-Lévy, A. ; Brooks, D. ; Burke, D. L. ; Rosell, A. Carnero ; Kind, M. Carrasco ; Carretero, J. ; Castander, F. J. ; Crocce, M. ; Cunha, C. E. ; Costa, L. N. da ; Desai, S. ; Diehl, H. T. ; Dietrich, J. P. ; Doel, P. ; Evrard, A. E. ; Flaugher, B. ; Fosalba, P. ; Gerdes, D. W. ; Goldstein, D. A. ; Gruen, D. ; Gruendl, R. A. ; Gutierrez, G. ; Honscheid, K. ; James, D. J. ; Jarvis, M. ; Krause, E. ; Kuehn, K. ; Kuropatkin, N. ; Lima, M. ; Marshall, J. L. ; Thomas, D. ; Dark Energy Survey Collaboration. / Inference from the small scales of cosmic shear with current and future Dark Energy Survey data. In: Monthly Notices of the Royal Astronomical Society. 2017 ; Vol. 465, No. 3. pp. 2567-2583.

Bibtex

@article{41d50092c1a247578dd3d5f03ce81de8,
title = "Inference from the small scales of cosmic shear with current and future Dark Energy Survey data",
abstract = "Cosmic shear is sensitive to fluctuations in the cosmological matter density field, including on small physical scales, where matter clustering is affected by baryonic physics in galaxies and galaxy clusters, such as star formation, supernovae feedback and AGN feedback. While muddying any cosmological information that is contained in small scale cosmic shear measurements, this does mean that cosmic shear has the potential to constrain baryonic physics and galaxy formation. We perform an analysis of the Dark Energy Survey (DES) Science Verification (SV) cosmic shear measurements, now extended to smaller scales, and using the Mead et al. 2015 halo model to account for baryonic feedback. While the SV data has limited statistical power, we demonstrate using a simulated likelihood analysis that the final DES data will have the statistical power to differentiate among baryonic feedback scenarios. We also explore some of the difficulties in interpreting the small scales in cosmic shear measurements, presenting estimates of the size of several other systematic effects that make inference from small scales difficult, including uncertainty in the modelling of intrinsic alignment on nonlinear scales, `lensing bias', and shape measurement selection effects. For the latter two, we make use of novel image simulations. While future cosmic shear datasets have the statistical power to constrain baryonic feedback scenarios, there are several systematic effects that require improved treatments, in order to make robust conclusions about baryonic feedback.",
keywords = "astro-ph.CO, gravitational lensing: weak, large-scale structure of Universe, RCUK, STFC",
author = "N. MacCrann and J. Aleksi{\'c} and A. Amara and Bridle, {S. L.} and C. Bruderer and C. Chang and S. Dodelson and Eifler, {T. F.} and Huff, {E. M.} and D. Huterer and T. Kacprzak and A. Refregier and E. Suchyta and Wechsler, {R. H.} and J. Zuntz and Abbott, {T. M. C.} and S. Allam and J. Annis and R. Armstrong and A. Benoit-L{\'e}vy and D. Brooks and Burke, {D. L.} and Rosell, {A. Carnero} and Kind, {M. Carrasco} and J. Carretero and Castander, {F. J.} and M. Crocce and Cunha, {C. E.} and Costa, {L. N. da} and S. Desai and Diehl, {H. T.} and Dietrich, {J. P.} and P. Doel and Evrard, {A. E.} and B. Flaugher and P. Fosalba and Gerdes, {D. W.} and Goldstein, {D. A.} and D. Gruen and Gruendl, {R. A.} and G. Gutierrez and K. Honscheid and James, {D. J.} and M. Jarvis and E. Krause and K. Kuehn and N. Kuropatkin and M. Lima and Marshall, {J. L.} and D. Thomas and {Dark Energy Survey Collaboration}",
note = "14 pages, 10 figures",
year = "2017",
month = mar,
doi = "10.1093/mnras/stw2849",
language = "English",
volume = "465",
pages = "2567--2583",
journal = "MNRAS",
issn = "0035-8711",
publisher = "Oxford University Press",
number = "3",

}

RIS

TY - JOUR

T1 - Inference from the small scales of cosmic shear with current and future Dark Energy Survey data

AU - MacCrann, N.

AU - Aleksić, J.

AU - Amara, A.

AU - Bridle, S. L.

AU - Bruderer, C.

AU - Chang, C.

AU - Dodelson, S.

AU - Eifler, T. F.

AU - Huff, E. M.

AU - Huterer, D.

AU - Kacprzak, T.

AU - Refregier, A.

AU - Suchyta, E.

AU - Wechsler, R. H.

AU - Zuntz, J.

AU - Abbott, T. M. C.

AU - Allam, S.

AU - Annis, J.

AU - Armstrong, R.

AU - Benoit-Lévy, A.

AU - Brooks, D.

AU - Burke, D. L.

AU - Rosell, A. Carnero

AU - Kind, M. Carrasco

AU - Carretero, J.

AU - Castander, F. J.

AU - Crocce, M.

AU - Cunha, C. E.

AU - Costa, L. N. da

AU - Desai, S.

AU - Diehl, H. T.

AU - Dietrich, J. P.

AU - Doel, P.

AU - Evrard, A. E.

AU - Flaugher, B.

AU - Fosalba, P.

AU - Gerdes, D. W.

AU - Goldstein, D. A.

AU - Gruen, D.

AU - Gruendl, R. A.

AU - Gutierrez, G.

AU - Honscheid, K.

AU - James, D. J.

AU - Jarvis, M.

AU - Krause, E.

AU - Kuehn, K.

AU - Kuropatkin, N.

AU - Lima, M.

AU - Marshall, J. L.

AU - Thomas, D.

AU - Dark Energy Survey Collaboration

N1 - 14 pages, 10 figures

PY - 2017/3

Y1 - 2017/3

N2 - Cosmic shear is sensitive to fluctuations in the cosmological matter density field, including on small physical scales, where matter clustering is affected by baryonic physics in galaxies and galaxy clusters, such as star formation, supernovae feedback and AGN feedback. While muddying any cosmological information that is contained in small scale cosmic shear measurements, this does mean that cosmic shear has the potential to constrain baryonic physics and galaxy formation. We perform an analysis of the Dark Energy Survey (DES) Science Verification (SV) cosmic shear measurements, now extended to smaller scales, and using the Mead et al. 2015 halo model to account for baryonic feedback. While the SV data has limited statistical power, we demonstrate using a simulated likelihood analysis that the final DES data will have the statistical power to differentiate among baryonic feedback scenarios. We also explore some of the difficulties in interpreting the small scales in cosmic shear measurements, presenting estimates of the size of several other systematic effects that make inference from small scales difficult, including uncertainty in the modelling of intrinsic alignment on nonlinear scales, `lensing bias', and shape measurement selection effects. For the latter two, we make use of novel image simulations. While future cosmic shear datasets have the statistical power to constrain baryonic feedback scenarios, there are several systematic effects that require improved treatments, in order to make robust conclusions about baryonic feedback.

AB - Cosmic shear is sensitive to fluctuations in the cosmological matter density field, including on small physical scales, where matter clustering is affected by baryonic physics in galaxies and galaxy clusters, such as star formation, supernovae feedback and AGN feedback. While muddying any cosmological information that is contained in small scale cosmic shear measurements, this does mean that cosmic shear has the potential to constrain baryonic physics and galaxy formation. We perform an analysis of the Dark Energy Survey (DES) Science Verification (SV) cosmic shear measurements, now extended to smaller scales, and using the Mead et al. 2015 halo model to account for baryonic feedback. While the SV data has limited statistical power, we demonstrate using a simulated likelihood analysis that the final DES data will have the statistical power to differentiate among baryonic feedback scenarios. We also explore some of the difficulties in interpreting the small scales in cosmic shear measurements, presenting estimates of the size of several other systematic effects that make inference from small scales difficult, including uncertainty in the modelling of intrinsic alignment on nonlinear scales, `lensing bias', and shape measurement selection effects. For the latter two, we make use of novel image simulations. While future cosmic shear datasets have the statistical power to constrain baryonic feedback scenarios, there are several systematic effects that require improved treatments, in order to make robust conclusions about baryonic feedback.

KW - astro-ph.CO

KW - gravitational lensing: weak

KW - large-scale structure of Universe

KW - RCUK

KW - STFC

U2 - 10.1093/mnras/stw2849

DO - 10.1093/mnras/stw2849

M3 - Article

VL - 465

SP - 2567

EP - 2583

JO - MNRAS

JF - MNRAS

SN - 0035-8711

IS - 3

ER -

ID: 5519031