Skip to content

Linear programming as a baseline for software effort estimation

Research output: Contribution to journalArticlepeer-review

  • Federica Sarro
  • Alessio Petrozziello

Software effort estimation studies still suffer from discordant empirical results (i.e., conclusion instability) mainly due to the lack of rigorous benchmarking methods. So far only one baseline model, namely, Automatically Transformed Linear Model (ATLM), has been proposed yet it has not been extensively assessed. In this article, we propose a novel method based on Linear Programming (dubbed as Linear Programming for Effort Estimation, LP4EE) and carry out a thorough empirical study to evaluate the effectiveness of both LP4EE and ATLM for benchmarking widely used effort estimation techniques. The results of our study confirm the need to benchmark every other proposal against accurate and robust baselines. They also reveal that LP4EE is more accurate than ATLM for 17% of the experiments and more robust than ATLM against different data splits and cross-validation methods for 44% of the cases. These results suggest that using LP4EE as a baseline can help reduce conclusion instability. We make publicly available an open-source implementation of LP4EE in order to facilitate its adoption in future studies.

Original languageEnglish
Article number12
JournalACM Transactions on Software Engineering and Methodology
Issue number3
Publication statusPublished - 1 Sep 2018


  • acmsmall-sample (1)

    Rights statement: © ACM 2018. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM Transactions on Software Engineering and Methodology,

    Accepted author manuscript (Post-print), 1.51 MB, PDF document

Relations Get citation (various referencing formats)

ID: 11693912