Skip to content
Back to outputs

Mesenchymal stromal cells and platelet-rich plasma promote tendon allograft healing in ovine anterior cruciate ligament reconstruction

Research output: Contribution to journalArticlepeer-review

Standard

Mesenchymal stromal cells and platelet-rich plasma promote tendon allograft healing in ovine anterior cruciate ligament reconstruction. / Hexter, Adam T.; Sanghani-Kerai, Anita; Heidari, Nima; Kalaskar, Deepak M.; Boyd, Ashleigh; Pendegrass, Catherine; Rodeo, Scott A.; Haddad, Fares S.; Blunn, Gordon W.

In: Knee Surgery, Sports Traumatology, Arthroscopy, 17.12.2020.

Research output: Contribution to journalArticlepeer-review

Harvard

Hexter, AT, Sanghani-Kerai, A, Heidari, N, Kalaskar, DM, Boyd, A, Pendegrass, C, Rodeo, SA, Haddad, FS & Blunn, GW 2020, 'Mesenchymal stromal cells and platelet-rich plasma promote tendon allograft healing in ovine anterior cruciate ligament reconstruction', Knee Surgery, Sports Traumatology, Arthroscopy. https://doi.org/10.1007/s00167-020-06392-9

APA

Hexter, A. T., Sanghani-Kerai, A., Heidari, N., Kalaskar, D. M., Boyd, A., Pendegrass, C., Rodeo, S. A., Haddad, F. S., & Blunn, G. W. (2020). Mesenchymal stromal cells and platelet-rich plasma promote tendon allograft healing in ovine anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy. https://doi.org/10.1007/s00167-020-06392-9

Vancouver

Hexter AT, Sanghani-Kerai A, Heidari N, Kalaskar DM, Boyd A, Pendegrass C et al. Mesenchymal stromal cells and platelet-rich plasma promote tendon allograft healing in ovine anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy. 2020 Dec 17. https://doi.org/10.1007/s00167-020-06392-9

Author

Hexter, Adam T. ; Sanghani-Kerai, Anita ; Heidari, Nima ; Kalaskar, Deepak M. ; Boyd, Ashleigh ; Pendegrass, Catherine ; Rodeo, Scott A. ; Haddad, Fares S. ; Blunn, Gordon W. / Mesenchymal stromal cells and platelet-rich plasma promote tendon allograft healing in ovine anterior cruciate ligament reconstruction. In: Knee Surgery, Sports Traumatology, Arthroscopy. 2020.

Bibtex

@article{8a72ebe1e6e645e9840c8c54134a2175,
title = "Mesenchymal stromal cells and platelet-rich plasma promote tendon allograft healing in ovine anterior cruciate ligament reconstruction",
abstract = "Purpose: The effect of bone marrow mesenchymal stromal cells (BMSCs) and platelet-rich plasma (PRP) on tendon allograft maturation in a large animal anterior cruciate ligament (ACL) reconstruction model was reported for the first time. It was hypothesised that compared with non-augmented ACL reconstruction, BMSCs and PRP would enhance graft maturation after 12 weeks and this would be detected using magnetic resonance imaging (MRI).Methods: Fifteen sheep underwent unilateral tendon allograft ACL reconstruction using aperture fixation and were randomised into three groups (n = 5). Group 1 received 10 million allogeneic BMSCs in 2 ml fibrin sealant; Group 2 received 12 ml PRP in a plasma clot injected into the graft and bone tunnels; and Group 3 (control) received no adjunctive treatment. At autopsy at 12 weeks, a graft maturation score was determined by the sum for graft integrity, synovial coverage and vascularisation, graft thickness and apparent tension, and synovial sealing at tunnel apertures. MRI analysis (n = 2 animals per group) of the signal–noise quotient (SNQ) and fibrous interzone (FIZ) was used to evaluate intra-articular graft maturation and tendon–bone healing, respectively. Spearman{\textquoteright}s rank correlation coefficient (r) of SNQ, autopsy graft maturation score and bone tunnel diameter were analysed.Results: The BMSC group (p = 0.01) and PRP group (p = 0.03) had a significantly higher graft maturation score compared with the control group. The BMSC group scored significantly higher for synovial sealing at tunnel apertures (p = 0.03) compared with the control group. The graft maturation score at autopsy significantly correlated with the SNQ (r = − 0.83, p < 0.01). The tunnel diameter of the femoral tunnel at the aperture (r = 0.883, p = 0.03) and mid-portion (r = 0.941, p = 0.02) positively correlated with the SNQ.Conclusions: BMSCs and PRP significantly enhanced graft maturation, which indicates that orthobiologics can accelerate the biologic events in tendon allograft incorporation. Femoral tunnel expansion significantly correlated with inferior maturation of the intra-articular graft. The clinical relevance of this study is that BMSCs and PRP enhance allograft healing in a translational model, and biological modulation of graft healing can be evaluated non-invasively using MRI.",
keywords = "Anterior cruciate ligament (ACL) reconstruction, Magnetic resonance imaging (MRI), Autopsy, Bone marrow-derived mesenchymal stromal cells (BMSCs), Platelet-rich plasma (PRP), Biological modulation",
author = "Hexter, {Adam T.} and Anita Sanghani-Kerai and Nima Heidari and Kalaskar, {Deepak M.} and Ashleigh Boyd and Catherine Pendegrass and Rodeo, {Scott A.} and Haddad, {Fares S.} and Blunn, {Gordon W.}",
year = "2020",
month = dec,
day = "17",
doi = "10.1007/s00167-020-06392-9",
language = "English",
journal = "Knee Surgery, Sports Traumatology, Arthroscopy",
issn = "0942-2056",
publisher = "Springer Verlag",

}

RIS

TY - JOUR

T1 - Mesenchymal stromal cells and platelet-rich plasma promote tendon allograft healing in ovine anterior cruciate ligament reconstruction

AU - Hexter, Adam T.

AU - Sanghani-Kerai, Anita

AU - Heidari, Nima

AU - Kalaskar, Deepak M.

AU - Boyd, Ashleigh

AU - Pendegrass, Catherine

AU - Rodeo, Scott A.

AU - Haddad, Fares S.

AU - Blunn, Gordon W.

PY - 2020/12/17

Y1 - 2020/12/17

N2 - Purpose: The effect of bone marrow mesenchymal stromal cells (BMSCs) and platelet-rich plasma (PRP) on tendon allograft maturation in a large animal anterior cruciate ligament (ACL) reconstruction model was reported for the first time. It was hypothesised that compared with non-augmented ACL reconstruction, BMSCs and PRP would enhance graft maturation after 12 weeks and this would be detected using magnetic resonance imaging (MRI).Methods: Fifteen sheep underwent unilateral tendon allograft ACL reconstruction using aperture fixation and were randomised into three groups (n = 5). Group 1 received 10 million allogeneic BMSCs in 2 ml fibrin sealant; Group 2 received 12 ml PRP in a plasma clot injected into the graft and bone tunnels; and Group 3 (control) received no adjunctive treatment. At autopsy at 12 weeks, a graft maturation score was determined by the sum for graft integrity, synovial coverage and vascularisation, graft thickness and apparent tension, and synovial sealing at tunnel apertures. MRI analysis (n = 2 animals per group) of the signal–noise quotient (SNQ) and fibrous interzone (FIZ) was used to evaluate intra-articular graft maturation and tendon–bone healing, respectively. Spearman’s rank correlation coefficient (r) of SNQ, autopsy graft maturation score and bone tunnel diameter were analysed.Results: The BMSC group (p = 0.01) and PRP group (p = 0.03) had a significantly higher graft maturation score compared with the control group. The BMSC group scored significantly higher for synovial sealing at tunnel apertures (p = 0.03) compared with the control group. The graft maturation score at autopsy significantly correlated with the SNQ (r = − 0.83, p < 0.01). The tunnel diameter of the femoral tunnel at the aperture (r = 0.883, p = 0.03) and mid-portion (r = 0.941, p = 0.02) positively correlated with the SNQ.Conclusions: BMSCs and PRP significantly enhanced graft maturation, which indicates that orthobiologics can accelerate the biologic events in tendon allograft incorporation. Femoral tunnel expansion significantly correlated with inferior maturation of the intra-articular graft. The clinical relevance of this study is that BMSCs and PRP enhance allograft healing in a translational model, and biological modulation of graft healing can be evaluated non-invasively using MRI.

AB - Purpose: The effect of bone marrow mesenchymal stromal cells (BMSCs) and platelet-rich plasma (PRP) on tendon allograft maturation in a large animal anterior cruciate ligament (ACL) reconstruction model was reported for the first time. It was hypothesised that compared with non-augmented ACL reconstruction, BMSCs and PRP would enhance graft maturation after 12 weeks and this would be detected using magnetic resonance imaging (MRI).Methods: Fifteen sheep underwent unilateral tendon allograft ACL reconstruction using aperture fixation and were randomised into three groups (n = 5). Group 1 received 10 million allogeneic BMSCs in 2 ml fibrin sealant; Group 2 received 12 ml PRP in a plasma clot injected into the graft and bone tunnels; and Group 3 (control) received no adjunctive treatment. At autopsy at 12 weeks, a graft maturation score was determined by the sum for graft integrity, synovial coverage and vascularisation, graft thickness and apparent tension, and synovial sealing at tunnel apertures. MRI analysis (n = 2 animals per group) of the signal–noise quotient (SNQ) and fibrous interzone (FIZ) was used to evaluate intra-articular graft maturation and tendon–bone healing, respectively. Spearman’s rank correlation coefficient (r) of SNQ, autopsy graft maturation score and bone tunnel diameter were analysed.Results: The BMSC group (p = 0.01) and PRP group (p = 0.03) had a significantly higher graft maturation score compared with the control group. The BMSC group scored significantly higher for synovial sealing at tunnel apertures (p = 0.03) compared with the control group. The graft maturation score at autopsy significantly correlated with the SNQ (r = − 0.83, p < 0.01). The tunnel diameter of the femoral tunnel at the aperture (r = 0.883, p = 0.03) and mid-portion (r = 0.941, p = 0.02) positively correlated with the SNQ.Conclusions: BMSCs and PRP significantly enhanced graft maturation, which indicates that orthobiologics can accelerate the biologic events in tendon allograft incorporation. Femoral tunnel expansion significantly correlated with inferior maturation of the intra-articular graft. The clinical relevance of this study is that BMSCs and PRP enhance allograft healing in a translational model, and biological modulation of graft healing can be evaluated non-invasively using MRI.

KW - Anterior cruciate ligament (ACL) reconstruction

KW - Magnetic resonance imaging (MRI)

KW - Autopsy

KW - Bone marrow-derived mesenchymal stromal cells (BMSCs)

KW - Platelet-rich plasma (PRP)

KW - Biological modulation

UR - http://link.springer.com/10.1007/s00167-020-06392-9

U2 - 10.1007/s00167-020-06392-9

DO - 10.1007/s00167-020-06392-9

M3 - Article

JO - Knee Surgery, Sports Traumatology, Arthroscopy

JF - Knee Surgery, Sports Traumatology, Arthroscopy

SN - 0942-2056

ER -

ID: 25526261