Skip to content
Back to outputs

Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv

Research output: Contribution to journalArticlepeer-review

Standard

Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv. / Ackley, K.; Amati, L.; Barbieri, C.; Bauer, F. E.; Benetti, S.; Bernardini, M. G.; Bhirombhakdi, K.; Botticella, M. T.; Branchesi, M.; Brocato, E.; Bruun, S. H.; Bulla, M.; Campana, S.; Cappellaro, E.; Castro-Tirado, A. J.; Chambers, K. C.; Chaty, S.; Chen, T. W.; Ciolfi, R.; Coleiro, A.; Copperwheat, C. M.; Covino, S.; Cutter, R.; D'Ammando, F.; D'Avanzo, P.; De Cesare, G.; D'Elia, V.; Della Valle, M.; Denneau, L.; De Pasquale, M.; Dhillon, V. S.; Dyer, M. J.; Elias-Rosa, N.; Evans, P. A.; Eyles-Ferris, R. A.J.; Fiore, A.; Fraser, M.; Fruchter, A. S.; Fynbo, J. P.U.; Galbany, L.; Gall, C.; Galloway, D. K.; Getman, F. I.; Ghirlanda, G.; Gillanders, J. H.; Gomboc, A.; Gompertz, B. P.; González-Fernández, C.; González-Gaitán, S.; Grado, A.; Greco, G.; Gromadzki, M.; Groot, P. J.; Gutiérrez, C. P.; Heikkilä, T.; Heintz, K. E.; Hjorth, J.; Hu, Y. D.; Huber, M. E.; Inserra, C.; Izzo, L.; Japelj, J.; Jerkstrand, A.; Jin, Z. P.; Jonker, P. G.; Kankare, E.; Kann, D. A.; Kennedy, M.; Kim, S.; Klose, S.; Kool, E. C.; Kotak, R.; Kuncarayakti, H.; Lamb, G. P.; Leloudas, G.; Levan, A. J.; Longo, F.; Lowe, T. B.; Lyman, J. D.; Magnier, E.; Maguire, K.; Maiorano, E.; Mandel, I.; Mapelli, M.; Mattila, S.; McBrien, O. R.; Melandri, A.; Michałowski, M. J.; Milvang-Jensen, B.; Moran, S.; Nicastro, L.; Nicholl, M.; Nicuesa Guelbenzu, A.; Nuttal, L.; Oates, S. R.; O'Brien, P. T.; Onori, F.; Palazzi, E.; Patricelli, B.; Perego, A.; Torres, M. A.P.; Perley, D. A.; Pian, E.; Pignata, G.; Piranomonte, S.; Poshyachinda, S.; Possenti, A.; Pumo, M. L.; Quirola-Vásquez, J.; Ragosta, F.; Ramsay, G.; Rau, A.; Rest, A.; Reynolds, T. M.; Rosetti, S. S.; Rossi, A.; Rosswog, S.; Sabha, N. B.; Sagués Carracedo, A.; Salafia, O. S.; Salmon, L.; Salvaterra, R.; Savaglio, S.; Sbordone, L.; Schady, P.; Schipani, P.; Schultz, A. S.B.; Schweyer, T.; Smartt, S. J.; Smith, K. W.; Smith, M.; Sollerman, J.; Srivastav, S.; Stanway, E. R.; Starling, R. L.C.; Steeghs, D.; Stratta, G.; Stubbs, C. W.; Tanvir, N. R.; Testa, V.; Thrane, E.; Tonry, J. L.; Turatto, M.; Ulaczyk, K.; Van Der Horst, A. J.; Vergani, S. D.; Walton, N. A.; Watson, D.; Wiersema, K.; Wiik, K.; Wyrzykowski, L.; Yang, S.; Yi, S. X.; Young, D. R.

In: Astronomy and Astrophysics, Vol. 643, A113, 10.11.2020.

Research output: Contribution to journalArticlepeer-review

Harvard

Ackley, K, Amati, L, Barbieri, C, Bauer, FE, Benetti, S, Bernardini, MG, Bhirombhakdi, K, Botticella, MT, Branchesi, M, Brocato, E, Bruun, SH, Bulla, M, Campana, S, Cappellaro, E, Castro-Tirado, AJ, Chambers, KC, Chaty, S, Chen, TW, Ciolfi, R, Coleiro, A, Copperwheat, CM, Covino, S, Cutter, R, D'Ammando, F, D'Avanzo, P, De Cesare, G, D'Elia, V, Della Valle, M, Denneau, L, De Pasquale, M, Dhillon, VS, Dyer, MJ, Elias-Rosa, N, Evans, PA, Eyles-Ferris, RAJ, Fiore, A, Fraser, M, Fruchter, AS, Fynbo, JPU, Galbany, L, Gall, C, Galloway, DK, Getman, FI, Ghirlanda, G, Gillanders, JH, Gomboc, A, Gompertz, BP, González-Fernández, C, González-Gaitán, S, Grado, A, Greco, G, Gromadzki, M, Groot, PJ, Gutiérrez, CP, Heikkilä, T, Heintz, KE, Hjorth, J, Hu, YD, Huber, ME, Inserra, C, Izzo, L, Japelj, J, Jerkstrand, A, Jin, ZP, Jonker, PG, Kankare, E, Kann, DA, Kennedy, M, Kim, S, Klose, S, Kool, EC, Kotak, R, Kuncarayakti, H, Lamb, GP, Leloudas, G, Levan, AJ, Longo, F, Lowe, TB, Lyman, JD, Magnier, E, Maguire, K, Maiorano, E, Mandel, I, Mapelli, M, Mattila, S, McBrien, OR, Melandri, A, Michałowski, MJ, Milvang-Jensen, B, Moran, S, Nicastro, L, Nicholl, M, Nicuesa Guelbenzu, A, Nuttal, L, Oates, SR, O'Brien, PT, Onori, F, Palazzi, E, Patricelli, B, Perego, A, Torres, MAP, Perley, DA, Pian, E, Pignata, G, Piranomonte, S, Poshyachinda, S, Possenti, A, Pumo, ML, Quirola-Vásquez, J, Ragosta, F, Ramsay, G, Rau, A, Rest, A, Reynolds, TM, Rosetti, SS, Rossi, A, Rosswog, S, Sabha, NB, Sagués Carracedo, A, Salafia, OS, Salmon, L, Salvaterra, R, Savaglio, S, Sbordone, L, Schady, P, Schipani, P, Schultz, ASB, Schweyer, T, Smartt, SJ, Smith, KW, Smith, M, Sollerman, J, Srivastav, S, Stanway, ER, Starling, RLC, Steeghs, D, Stratta, G, Stubbs, CW, Tanvir, NR, Testa, V, Thrane, E, Tonry, JL, Turatto, M, Ulaczyk, K, Van Der Horst, AJ, Vergani, SD, Walton, NA, Watson, D, Wiersema, K, Wiik, K, Wyrzykowski, L, Yang, S, Yi, SX & Young, DR 2020, 'Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv', Astronomy and Astrophysics, vol. 643, A113. https://doi.org/10.1051/0004-6361/202037669

APA

Ackley, K., Amati, L., Barbieri, C., Bauer, F. E., Benetti, S., Bernardini, M. G., Bhirombhakdi, K., Botticella, M. T., Branchesi, M., Brocato, E., Bruun, S. H., Bulla, M., Campana, S., Cappellaro, E., Castro-Tirado, A. J., Chambers, K. C., Chaty, S., Chen, T. W., Ciolfi, R., ... Young, D. R. (2020). Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv. Astronomy and Astrophysics, 643, [A113]. https://doi.org/10.1051/0004-6361/202037669

Vancouver

Ackley K, Amati L, Barbieri C, Bauer FE, Benetti S, Bernardini MG et al. Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv. Astronomy and Astrophysics. 2020 Nov 10;643. A113. https://doi.org/10.1051/0004-6361/202037669

Author

Ackley, K. ; Amati, L. ; Barbieri, C. ; Bauer, F. E. ; Benetti, S. ; Bernardini, M. G. ; Bhirombhakdi, K. ; Botticella, M. T. ; Branchesi, M. ; Brocato, E. ; Bruun, S. H. ; Bulla, M. ; Campana, S. ; Cappellaro, E. ; Castro-Tirado, A. J. ; Chambers, K. C. ; Chaty, S. ; Chen, T. W. ; Ciolfi, R. ; Coleiro, A. ; Copperwheat, C. M. ; Covino, S. ; Cutter, R. ; D'Ammando, F. ; D'Avanzo, P. ; De Cesare, G. ; D'Elia, V. ; Della Valle, M. ; Denneau, L. ; De Pasquale, M. ; Dhillon, V. S. ; Dyer, M. J. ; Elias-Rosa, N. ; Evans, P. A. ; Eyles-Ferris, R. A.J. ; Fiore, A. ; Fraser, M. ; Fruchter, A. S. ; Fynbo, J. P.U. ; Galbany, L. ; Gall, C. ; Galloway, D. K. ; Getman, F. I. ; Ghirlanda, G. ; Gillanders, J. H. ; Gomboc, A. ; Gompertz, B. P. ; González-Fernández, C. ; González-Gaitán, S. ; Grado, A. ; Greco, G. ; Gromadzki, M. ; Groot, P. J. ; Gutiérrez, C. P. ; Heikkilä, T. ; Heintz, K. E. ; Hjorth, J. ; Hu, Y. D. ; Huber, M. E. ; Inserra, C. ; Izzo, L. ; Japelj, J. ; Jerkstrand, A. ; Jin, Z. P. ; Jonker, P. G. ; Kankare, E. ; Kann, D. A. ; Kennedy, M. ; Kim, S. ; Klose, S. ; Kool, E. C. ; Kotak, R. ; Kuncarayakti, H. ; Lamb, G. P. ; Leloudas, G. ; Levan, A. J. ; Longo, F. ; Lowe, T. B. ; Lyman, J. D. ; Magnier, E. ; Maguire, K. ; Maiorano, E. ; Mandel, I. ; Mapelli, M. ; Mattila, S. ; McBrien, O. R. ; Melandri, A. ; Michałowski, M. J. ; Milvang-Jensen, B. ; Moran, S. ; Nicastro, L. ; Nicholl, M. ; Nicuesa Guelbenzu, A. ; Nuttal, L. ; Oates, S. R. ; O'Brien, P. T. ; Onori, F. ; Palazzi, E. ; Patricelli, B. ; Perego, A. ; Torres, M. A.P. ; Perley, D. A. ; Pian, E. ; Pignata, G. ; Piranomonte, S. ; Poshyachinda, S. ; Possenti, A. ; Pumo, M. L. ; Quirola-Vásquez, J. ; Ragosta, F. ; Ramsay, G. ; Rau, A. ; Rest, A. ; Reynolds, T. M. ; Rosetti, S. S. ; Rossi, A. ; Rosswog, S. ; Sabha, N. B. ; Sagués Carracedo, A. ; Salafia, O. S. ; Salmon, L. ; Salvaterra, R. ; Savaglio, S. ; Sbordone, L. ; Schady, P. ; Schipani, P. ; Schultz, A. S.B. ; Schweyer, T. ; Smartt, S. J. ; Smith, K. W. ; Smith, M. ; Sollerman, J. ; Srivastav, S. ; Stanway, E. R. ; Starling, R. L.C. ; Steeghs, D. ; Stratta, G. ; Stubbs, C. W. ; Tanvir, N. R. ; Testa, V. ; Thrane, E. ; Tonry, J. L. ; Turatto, M. ; Ulaczyk, K. ; Van Der Horst, A. J. ; Vergani, S. D. ; Walton, N. A. ; Watson, D. ; Wiersema, K. ; Wiik, K. ; Wyrzykowski, L. ; Yang, S. ; Yi, S. X. ; Young, D. R. / Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv. In: Astronomy and Astrophysics. 2020 ; Vol. 643.

Bibtex

@article{e686edef03ac4cae8013685d1757004a,
title = "Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv",
abstract = "Context: Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS.Aims: In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger.Methods: Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency – a 50% (90%) credible area of 5 deg2 (23 deg2) – despite the relatively large distance of 267 ± 52 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups.Results: Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS–BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r ∼ 22 (resp. K ∼ 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total ∼50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M ≳ 0.1 M⊙ to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger.Conclusions: Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.",
keywords = "Gravitational waves, Stars: neutron, Supernovae: general, RCUK, STFC, ST/P000312/1, ST/P000495/1, ST/T007184/1",
author = "K. Ackley and L. Amati and C. Barbieri and Bauer, {F. E.} and S. Benetti and Bernardini, {M. G.} and K. Bhirombhakdi and Botticella, {M. T.} and M. Branchesi and E. Brocato and Bruun, {S. H.} and M. Bulla and S. Campana and E. Cappellaro and Castro-Tirado, {A. J.} and Chambers, {K. C.} and S. Chaty and Chen, {T. W.} and R. Ciolfi and A. Coleiro and Copperwheat, {C. M.} and S. Covino and R. Cutter and F. D'Ammando and P. D'Avanzo and {De Cesare}, G. and V. D'Elia and {Della Valle}, M. and L. Denneau and {De Pasquale}, M. and Dhillon, {V. S.} and Dyer, {M. J.} and N. Elias-Rosa and Evans, {P. A.} and Eyles-Ferris, {R. A.J.} and A. Fiore and M. Fraser and Fruchter, {A. S.} and Fynbo, {J. P.U.} and L. Galbany and C. Gall and Galloway, {D. K.} and Getman, {F. I.} and G. Ghirlanda and Gillanders, {J. H.} and A. Gomboc and Gompertz, {B. P.} and C. Gonz{\'a}lez-Fern{\'a}ndez and S. Gonz{\'a}lez-Gait{\'a}n and A. Grado and G. Greco and M. Gromadzki and Groot, {P. J.} and Guti{\'e}rrez, {C. P.} and T. Heikkil{\"a} and Heintz, {K. E.} and J. Hjorth and Hu, {Y. D.} and Huber, {M. E.} and C. Inserra and L. Izzo and J. Japelj and A. Jerkstrand and Jin, {Z. P.} and Jonker, {P. G.} and E. Kankare and Kann, {D. A.} and M. Kennedy and S. Kim and S. Klose and Kool, {E. C.} and R. Kotak and H. Kuncarayakti and Lamb, {G. P.} and G. Leloudas and Levan, {A. J.} and F. Longo and Lowe, {T. B.} and Lyman, {J. D.} and E. Magnier and K. Maguire and E. Maiorano and I. Mandel and M. Mapelli and S. Mattila and McBrien, {O. R.} and A. Melandri and Micha{\l}owski, {M. J.} and B. Milvang-Jensen and S. Moran and L. Nicastro and M. Nicholl and {Nicuesa Guelbenzu}, A. and L. Nuttal and Oates, {S. R.} and O'Brien, {P. T.} and F. Onori and E. Palazzi and B. Patricelli and A. Perego and Torres, {M. A.P.} and Perley, {D. A.} and E. Pian and G. Pignata and S. Piranomonte and S. Poshyachinda and A. Possenti and Pumo, {M. L.} and J. Quirola-V{\'a}squez and F. Ragosta and G. Ramsay and A. Rau and A. Rest and Reynolds, {T. M.} and Rosetti, {S. S.} and A. Rossi and S. Rosswog and Sabha, {N. B.} and {Sagu{\'e}s Carracedo}, A. and Salafia, {O. S.} and L. Salmon and R. Salvaterra and S. Savaglio and L. Sbordone and P. Schady and P. Schipani and Schultz, {A. S.B.} and T. Schweyer and Smartt, {S. J.} and Smith, {K. W.} and M. Smith and J. Sollerman and S. Srivastav and Stanway, {E. R.} and Starling, {R. L.C.} and D. Steeghs and G. Stratta and Stubbs, {C. W.} and Tanvir, {N. R.} and V. Testa and E. Thrane and Tonry, {J. L.} and M. Turatto and K. Ulaczyk and {Van Der Horst}, {A. J.} and Vergani, {S. D.} and Walton, {N. A.} and D. Watson and K. Wiersema and K. Wiik and L. Wyrzykowski and S. Yang and Yi, {S. X.} and Young, {D. R.}",
year = "2020",
month = nov,
day = "10",
doi = "10.1051/0004-6361/202037669",
language = "English",
volume = "643",
journal = "Astronomy and Astrophysics",
issn = "0004-6361",
publisher = "EDP Sciences",

}

RIS

TY - JOUR

T1 - Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv

AU - Ackley, K.

AU - Amati, L.

AU - Barbieri, C.

AU - Bauer, F. E.

AU - Benetti, S.

AU - Bernardini, M. G.

AU - Bhirombhakdi, K.

AU - Botticella, M. T.

AU - Branchesi, M.

AU - Brocato, E.

AU - Bruun, S. H.

AU - Bulla, M.

AU - Campana, S.

AU - Cappellaro, E.

AU - Castro-Tirado, A. J.

AU - Chambers, K. C.

AU - Chaty, S.

AU - Chen, T. W.

AU - Ciolfi, R.

AU - Coleiro, A.

AU - Copperwheat, C. M.

AU - Covino, S.

AU - Cutter, R.

AU - D'Ammando, F.

AU - D'Avanzo, P.

AU - De Cesare, G.

AU - D'Elia, V.

AU - Della Valle, M.

AU - Denneau, L.

AU - De Pasquale, M.

AU - Dhillon, V. S.

AU - Dyer, M. J.

AU - Elias-Rosa, N.

AU - Evans, P. A.

AU - Eyles-Ferris, R. A.J.

AU - Fiore, A.

AU - Fraser, M.

AU - Fruchter, A. S.

AU - Fynbo, J. P.U.

AU - Galbany, L.

AU - Gall, C.

AU - Galloway, D. K.

AU - Getman, F. I.

AU - Ghirlanda, G.

AU - Gillanders, J. H.

AU - Gomboc, A.

AU - Gompertz, B. P.

AU - González-Fernández, C.

AU - González-Gaitán, S.

AU - Grado, A.

AU - Greco, G.

AU - Gromadzki, M.

AU - Groot, P. J.

AU - Gutiérrez, C. P.

AU - Heikkilä, T.

AU - Heintz, K. E.

AU - Hjorth, J.

AU - Hu, Y. D.

AU - Huber, M. E.

AU - Inserra, C.

AU - Izzo, L.

AU - Japelj, J.

AU - Jerkstrand, A.

AU - Jin, Z. P.

AU - Jonker, P. G.

AU - Kankare, E.

AU - Kann, D. A.

AU - Kennedy, M.

AU - Kim, S.

AU - Klose, S.

AU - Kool, E. C.

AU - Kotak, R.

AU - Kuncarayakti, H.

AU - Lamb, G. P.

AU - Leloudas, G.

AU - Levan, A. J.

AU - Longo, F.

AU - Lowe, T. B.

AU - Lyman, J. D.

AU - Magnier, E.

AU - Maguire, K.

AU - Maiorano, E.

AU - Mandel, I.

AU - Mapelli, M.

AU - Mattila, S.

AU - McBrien, O. R.

AU - Melandri, A.

AU - Michałowski, M. J.

AU - Milvang-Jensen, B.

AU - Moran, S.

AU - Nicastro, L.

AU - Nicholl, M.

AU - Nicuesa Guelbenzu, A.

AU - Nuttal, L.

AU - Oates, S. R.

AU - O'Brien, P. T.

AU - Onori, F.

AU - Palazzi, E.

AU - Patricelli, B.

AU - Perego, A.

AU - Torres, M. A.P.

AU - Perley, D. A.

AU - Pian, E.

AU - Pignata, G.

AU - Piranomonte, S.

AU - Poshyachinda, S.

AU - Possenti, A.

AU - Pumo, M. L.

AU - Quirola-Vásquez, J.

AU - Ragosta, F.

AU - Ramsay, G.

AU - Rau, A.

AU - Rest, A.

AU - Reynolds, T. M.

AU - Rosetti, S. S.

AU - Rossi, A.

AU - Rosswog, S.

AU - Sabha, N. B.

AU - Sagués Carracedo, A.

AU - Salafia, O. S.

AU - Salmon, L.

AU - Salvaterra, R.

AU - Savaglio, S.

AU - Sbordone, L.

AU - Schady, P.

AU - Schipani, P.

AU - Schultz, A. S.B.

AU - Schweyer, T.

AU - Smartt, S. J.

AU - Smith, K. W.

AU - Smith, M.

AU - Sollerman, J.

AU - Srivastav, S.

AU - Stanway, E. R.

AU - Starling, R. L.C.

AU - Steeghs, D.

AU - Stratta, G.

AU - Stubbs, C. W.

AU - Tanvir, N. R.

AU - Testa, V.

AU - Thrane, E.

AU - Tonry, J. L.

AU - Turatto, M.

AU - Ulaczyk, K.

AU - Van Der Horst, A. J.

AU - Vergani, S. D.

AU - Walton, N. A.

AU - Watson, D.

AU - Wiersema, K.

AU - Wiik, K.

AU - Wyrzykowski, L.

AU - Yang, S.

AU - Yi, S. X.

AU - Young, D. R.

PY - 2020/11/10

Y1 - 2020/11/10

N2 - Context: Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS.Aims: In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger.Methods: Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency – a 50% (90%) credible area of 5 deg2 (23 deg2) – despite the relatively large distance of 267 ± 52 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups.Results: Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS–BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r ∼ 22 (resp. K ∼ 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total ∼50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M ≳ 0.1 M⊙ to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger.Conclusions: Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.

AB - Context: Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS.Aims: In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger.Methods: Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency – a 50% (90%) credible area of 5 deg2 (23 deg2) – despite the relatively large distance of 267 ± 52 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups.Results: Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS–BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r ∼ 22 (resp. K ∼ 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total ∼50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M ≳ 0.1 M⊙ to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger.Conclusions: Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.

KW - Gravitational waves

KW - Stars: neutron

KW - Supernovae: general

KW - RCUK

KW - STFC

KW - ST/P000312/1

KW - ST/P000495/1

KW - ST/T007184/1

UR - http://www.scopus.com/inward/record.url?scp=85096034931&partnerID=8YFLogxK

U2 - 10.1051/0004-6361/202037669

DO - 10.1051/0004-6361/202037669

M3 - Article

AN - SCOPUS:85096034931

VL - 643

JO - Astronomy and Astrophysics

JF - Astronomy and Astrophysics

SN - 0004-6361

M1 - A113

ER -

ID: 25694725