Skip to content

Overview of the SDSS-IV MaNGA Survey: mapping nearby galaxies at Apache Point Observatory

Research output: Contribution to journalArticle

  • Kevin Bundy
  • Matthew A. Bershady
  • David R. Law
  • Renbin Yan
  • Niv Drory
  • Nicholas MacDonald
  • David A. Wake
  • Brian Cherinka
  • José R. Sánchez-Gallego
  • Anne-Marie Weijmans
  • Christy Tremonti
  • Karen Masters
  • Lodovico Coccato
  • Aleksandar M. Diamond-Stanic
  • Alfonso Aragon-Salamanca
  • Vladimir Avila-Reese
  • Carles Badenes
  • Jesus Falcon-Barroso
  • Francesco Belfiore
  • Dmitry Bizyaev
  • Guillermo A. Blanc
  • Joss Bland-Hawthorn
  • Michael R. Blanton
  • Joel R. Brownstein
  • Nell Byler
  • Michele Cappellari
  • Charlie Conroy
  • Aaron A. Dutton
  • Eric Emsellem
  • James Etherington
  • Peter M. Frinchaboy
  • Hai Fu
  • James E. Gunn
  • Paul Harding
  • Evelyn J. Johnston
  • Guinevere Kauffmann
  • Karen Kinemuchi
  • Mark A. Klaene
  • Johan H. Knapen
  • Alexie Leauthaud
  • Cheng Li
  • Lihwai Lin
  • Roberto Maiolino
  • Viktor Malanushenko
  • Elena Malanushenko
  • Shude Mao
  • Richard M. McDermid
  • Michael R. Merrifield
  • Daniel Oravetz
  • Kaike Pan
  • John K. Parejko
  • Sebastian F. Sanchez
  • David Schlegel
  • Audrey Simmons
  • Oliver Steele
  • Matthias Steinmetz
  • Karun Thanjavur
  • Benjamin A. Thompson
  • Jeremy L. Tinker
  • Remco C. E. van den Bosch
  • Kyle B. Westfall
  • David Wilkinson
  • Shelley Wright
  • Ting Xiao
  • Kai Zhang
We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12" (19 fibers) to 32" (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 A at R~2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (per A, per 2" fiber) at 23 AB mag per sq. arcsec, which is typical for the outskirts of MaNGA galaxies. Targets are selected with stellar mass greater than 1e9 Msun using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr.
Original languageEnglish
Article number7
Pages (from-to)7
JournalThe Astrophysical Journal
Volume798
Issue number1
Early online date14 Oct 2014
DOIs
Publication statusPublished - 1 Jan 2015

Documents

  • pdf

    Rights statement: copyright 2015. The American Astronomical Society

    Accepted author manuscript (Post-print), 10.4 MB, PDF document

Related information

Relations Get citation (various referencing formats)

ID: 2318740