Skip to content

Quasar accretion disk sizes from continuum reverberation mapping from the Dark Energy Survey

Research output: Contribution to journalArticle

We present accretion disk size measurements for 15 luminous quasars at 0.7 ≤ z ≤ 1.9 derived from griz light curves from the Dark Energy Survey. We measure the disk sizes with continuum reverberation mapping using two methods, both of which are derived from the expectation that accretion disks have a radial temperature gradient and the continuum emission at a given radius is well described by a single blackbody. In the first method we measure the relative lags between the multiband light curves, which provides the relative time lag between shorter and longer wavelength variations. From this, we are only able to constrain upper limits on disk sizes, as many are consistent with no lag the 2σ level. The second method fits the model parameters for the canonical thin disk directly rather than solving for the individual time lags between the light curves. Our measurements demonstrate good agreement with the sizes predicted by this model for accretion rates between 0.3 and 1 times the Eddington rate. Given our large uncertainties, our measurements are also consistent with disk size measurements from gravitational microlensing studies of strongly lensed quasars, as well as other photometric reverberation mapping results, that find disk sizes that are a factor of a few (∼3) larger than predictions.

Original languageEnglish
Article number123
JournalAstrophysical Journal
Issue number2
Publication statusPublished - 30 Jul 2018


  • Mudd_2018_ApJ_862_123

    Rights statement: D. Mudd, et. al., 2018, ApJ, 862, 123. © 2018. The American Astronomical Society. All rights reserved. Reproduced by permission of the AAS.

    Final published version, 1.82 MB, PDF document

Relations Get citation (various referencing formats)

ID: 11741124