Skip to content

Random shapley forests: cooperative game based random forests with consistency

Research output: Contribution to journal › Article

The original random forests algorithm has been widely used and has achieved excellent performance for the classification and regression tasks. However, the research on the theory of random forests lags far behind its applications. In this paper, to narrow the gap between the applications and theory of random forests, we propose a new random forests algorithm, called random Shapley forests (RSFs), based on the Shapley value. The Shapley value is one of the well-known
solutions in the cooperative game, which can fairly assess the power of each player in a game. In the construction of RSFs, RSFs uses the Shapley value to evaluate the importance of each feature at each tree node by computing the dependency among the possible feature coalitions. In particular, inspired by the existing consistency theory, we have proved the consistency of the proposed random forests algorithm. Moreover, to verify the effectiveness of the proposed algorithm, experiments on eight UCI benchmark datasets and four real-world datasets have been conducted. The results show that RSFs perform better than or at least comparable with the existing consistent random forests, the original random forests and a classic classifier, support vector machines.
Original languageEnglish
JournalIEEE Transactions on Cybernetics
Publication statusAccepted for publication - 4 Feb 2020


  • Random Shapley Forests: Cooperative Game Based Random Forests with Consistency

    Rights statement: The embargo end date of 2050 is a temporary measure until we know the publication date. Once we know the publication date the full text of this article will be able to view shortly afterwards.

    Accepted author manuscript (Post-print), 1.03 MB, PDF document

    Due to publisher’s copyright restrictions, this document is not freely available to download from this website until: 1/01/50

Related information

Relations Get citation (various referencing formats)

ID: 19055857