sEMG bias-driven functional electrical stimulation system for upper-limb stroke rehabilitation
Research output: Contribution to journal › Article › peer-review
It is evident that the dominant therapy of functional electrical stimulation (FES) for stroke rehabilitation suffers from heavy dependency on therapists experience and lack of feedback from patients status, which decrease the patients’ voluntary participation, reducing the rehabilitation efficacy. This paper proposes a closed loop FES system using surface electromyography (sEMG) bias feedback from bilateral arms for enhancing upper-limb stroke rehabilitation. This wireless portable system consists of sEMG data acquisition and FES modules, the former is used to measure and analyze the subject’s bilateral arm motion intention and neuromuscular states in terms of their sEMG, the latter of multi-channel FES output is controlled via the sEMG bias of the bilateral arms. The system has been evaluated with experiments proving that the system can achieve 39.9 dB signal-to-noise ratio (SNR) in the lab environment, outperforming existing similar systems. The results also show that voluntary and active participation can be effectively employed to achieve different FES intensity for FES-assisted hand motions, demonstrating the potential for active stroke rehabilitation.
Original language | English |
---|---|
Pages (from-to) | 6812-6821 |
Journal | IEEE Sensors Journal |
Volume | 18 |
Issue number | 16 |
Early online date | 18 Jun 2018 |
DOIs | |
Publication status | Published - 15 Aug 2018 |
Documents
- FINAL VERSION
Rights statement: © © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Accepted author manuscript (Post-print), 29.9 MB, PDF document
Related information
ID: 10751880