Skip to content

Soil microarthropod community dynamics in extensive green roofs

Research output: Contribution to journalArticlepeer-review

Green roofs are of increasing interest to ecologists, engineers and architects, as cities grow and aim to become more sustainable. They could be exploited to improve urban biodiversity and ecosystem services, yet almost nothing is known about them from a soil community ecology perspective, despite how critical soil food webs are to ecosystem functioning. This paper provides the first comprehensive study incorporating the annual cycle of green roof soil microarthropods.

Microarthropod communities were monitored over 14 months on two extensive green roofs. Abiotic factors, including substrate moisture, were recorded, as were biotic factors such as plant and mycorrhizal colonisation. Microarthropod interactions with these variables were then examined.

Microarthropod diversity was low overall, with a few dominant species peaking seasonally. On occasion, total abundance was comparable to other early successional soils. The majority of species present were drought tolerant collembola and xerophillic mites, suggesting that moisture levels on green roofs are a major limiting factor for soil microarthropods.

Our results suggest that the microarthropod community present in extensive green roof soils is impoverished, limiting the success of above-ground flora and fauna and ultimately the success of the roof as an urban habitat. We conclude that green roof building guidelines should incorporate soil communities in their design and should aim to be heterogeneous at the roof and landscape level, for the purpose of supporting soil biodiversity and creating sustainable habitats.
Original languageEnglish
Pages (from-to)197-204
JournalEcological Engineering
Early online date10 May 2013
Publication statusPublished - Aug 2013


  • Rumble and Gange EcoEng PURE

    Rights statement: NOTICE: this is the author’s version of a work that was accepted for publication in Ecological Engineering. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Ecological Engineering, [VOL 57, (2013)] DOI 10.1016/j.ecoleng.2013.04.012

    Accepted author manuscript (Post-print), 461 KB, PDF document

    Licence: CC BY

Related information

Relations Get citation (various referencing formats)

ID: 1688842