Skip to content

Symmetries and entanglement features of inner-mode resolved correlations of interfering nonidentical photons

Research output: Contribution to journalArticlepeer-review

Multiphoton quantum interference underpins fundamental tests of quantum mechanics and quantum technologies. Consequently, the detrimental effect of photon distinguishability in multiphoton interference experiments can be catastrophic. Here we employ correlation measurements in the photonic inner modes, time or frequency, to restore quantum interference between photons differing in their colors or injection times in arbitrary linear optical networks, without the need for additional filtering or postselection. Interestingly, we demonstrate how harnessing the multiphoton inner-mode quantum information enables us to infer information about symmetries of multiphoton networks and states and to observe arbitrary degrees of W-state entanglement between a small number of photons with a fixed interferometer. These results are therefore of profound interest for future applications of universal inner-mode-resolved linear optics across fundamental science and quantum technologies with photons with experimentally different spectral properties.

Original languageEnglish
Article number053829
JournalPhysical Review A
Issue number5
Publication statusPublished - 19 Nov 2018


  • LaibacherTamma_SymmetriesAndEntanglementFeatures

    Rights statement: Simon Laibacher and Vincenzo Tamma. 'Symmetries and entanglement features of inner-mode resolved correlations of interfering nonidentical photons'. Physical Review A, 98(5), 053829. DOI: 10.1103/PhysRevA.98.053829. © 2018 American Physical Society. All rights reserved.

    Accepted author manuscript (Post-print), 1.57 MB, PDF document

Related information

Relations Get citation (various referencing formats)

ID: 11970011