Skip to content
Back to outputs

TDCOSMO IV: Hierarchical time-delay cosmography -- joint inference of the Hubble constant and galaxy density profiles

Research output: Contribution to journalArticlepeer-review

Standard

TDCOSMO IV : Hierarchical time-delay cosmography -- joint inference of the Hubble constant and galaxy density profiles. / Birrer, S.; Shajib, A. J.; Galan, A.; Millon, M.; Treu, T.; Agnello, A.; Auger, M.; Chen, G. C. -F.; Christensen, L.; Collett, T.; Courbin, F.; Fassnacht, C. D.; Koopmans, L. V. E.; Marshall, P. J.; Rusu, C. E.; Sluse, D.; Spiniello, C.; Suyu, S. H.; Wagner-Carena, S.; Wong, K. C.; Barnabè, M.; Bolton, A. S.; Czoske, O.; Ding, X.; Frieman, J. A.; Vyvere, L. Van de.

In: Astronomy and Astrophysics, 06.07.2020.

Research output: Contribution to journalArticlepeer-review

Harvard

Birrer, S, Shajib, AJ, Galan, A, Millon, M, Treu, T, Agnello, A, Auger, M, Chen, GC-F, Christensen, L, Collett, T, Courbin, F, Fassnacht, CD, Koopmans, LVE, Marshall, PJ, Rusu, CE, Sluse, D, Spiniello, C, Suyu, SH, Wagner-Carena, S, Wong, KC, Barnabè, M, Bolton, AS, Czoske, O, Ding, X, Frieman, JA & Vyvere, LVD 2020, 'TDCOSMO IV: Hierarchical time-delay cosmography -- joint inference of the Hubble constant and galaxy density profiles', Astronomy and Astrophysics.

APA

Birrer, S., Shajib, A. J., Galan, A., Millon, M., Treu, T., Agnello, A., Auger, M., Chen, G. C. -F., Christensen, L., Collett, T., Courbin, F., Fassnacht, C. D., Koopmans, L. V. E., Marshall, P. J., Rusu, C. E., Sluse, D., Spiniello, C., Suyu, S. H., Wagner-Carena, S., ... Vyvere, L. V. D. (Accepted/In press). TDCOSMO IV: Hierarchical time-delay cosmography -- joint inference of the Hubble constant and galaxy density profiles. Astronomy and Astrophysics.

Vancouver

Birrer S, Shajib AJ, Galan A, Millon M, Treu T, Agnello A et al. TDCOSMO IV: Hierarchical time-delay cosmography -- joint inference of the Hubble constant and galaxy density profiles. Astronomy and Astrophysics. 2020 Jul 6.

Author

Birrer, S. ; Shajib, A. J. ; Galan, A. ; Millon, M. ; Treu, T. ; Agnello, A. ; Auger, M. ; Chen, G. C. -F. ; Christensen, L. ; Collett, T. ; Courbin, F. ; Fassnacht, C. D. ; Koopmans, L. V. E. ; Marshall, P. J. ; Rusu, C. E. ; Sluse, D. ; Spiniello, C. ; Suyu, S. H. ; Wagner-Carena, S. ; Wong, K. C. ; Barnabè, M. ; Bolton, A. S. ; Czoske, O. ; Ding, X. ; Frieman, J. A. ; Vyvere, L. Van de. / TDCOSMO IV : Hierarchical time-delay cosmography -- joint inference of the Hubble constant and galaxy density profiles. In: Astronomy and Astrophysics. 2020.

Bibtex

@article{82b400644e8e450fbc32cbc09dc46739,
title = "TDCOSMO IV: Hierarchical time-delay cosmography -- joint inference of the Hubble constant and galaxy density profiles",
abstract = "The H0LiCOW collaboration inferred via gravitational lensing time delays a Hubble constant $H_0=73.3^{+1.7}_{-1.8}$ km s$^{-1}{\rm Mpc}^{-1}$, describing deflector mass density profiles by either a power-law or stars plus standard dark matter halos. The mass-sheet transform (MST) that leaves the lensing observables unchanged is considered the dominant source of residual uncertainty in $H_0$. We quantify any potential effect of the MST with flexible mass models that are maximally degenerate with H0. Our calculation is based on a new hierarchical approach in which the MST is only constrained by stellar kinematics. The approach is validated on hydrodynamically simulated lenses. We apply the method to the TDCOSMO sample of 7 lenses (6 from H0LiCOW) and measure $H_0=74.5^{+5.6}_{-6.1}$ km s$^{-1}{\rm Mpc}^{-1}$. In order to further constrain the deflector mass profiles, we then add imaging and spectroscopy for 33 strong gravitational lenses from the SLACS sample. For 9 of the SLAC lenses we use resolved kinematics to constrain the stellar anisotropy. From the joint analysis of the TDCOSMO+SLACS sample, we measure $H_0=67.4^{+4.1}_{-3.2}$ km s$^{-1}{\rm Mpc}^{-1}$, assuming that the TDCOSMO and SLACS galaxies are drawn from the same parent population. The blind H0LiCOW, TDCOSMO-only and TDCOSMO+SLACS analyses are in mutual statistical agreement. The TDCOSMO+SLACS analysis prefers marginally shallower mass profiles than H0LiCOW or TDCOSMO-only. While our new analysis does not statistically invalidate the mass profile assumptions by H0LiCOW, and thus their $H_0$ measurement relying on those, it demonstrates the importance of understanding the mass density profile of elliptical galaxies. The uncertainties on $H_0$ derived in this paper can be reduced by physical or observational priors on the form of the mass profile, or by additional data, chiefly spatially resolved kinematics of lens galaxies. ",
keywords = "astro-ph.CO, astro-ph.GA",
author = "S. Birrer and Shajib, {A. J.} and A. Galan and M. Millon and T. Treu and A. Agnello and M. Auger and Chen, {G. C. -F.} and L. Christensen and T. Collett and F. Courbin and Fassnacht, {C. D.} and Koopmans, {L. V. E.} and Marshall, {P. J.} and Rusu, {C. E.} and D. Sluse and C. Spiniello and Suyu, {S. H.} and S. Wagner-Carena and Wong, {K. C.} and M. Barnab{\`e} and Bolton, {A. S.} and O. Czoske and X. Ding and Frieman, {J. A.} and Vyvere, {L. Van de}",
note = "to be submitted to A&A, comments welcomed. Full analysis available at https://github.com/TDCOSMO/hierarchy_analysis_2020_public No embargo ",
year = "2020",
month = jul,
day = "6",
language = "English",
journal = "Astronomy and Astrophysics",
issn = "0004-6361",
publisher = "EDP Sciences",

}

RIS

TY - JOUR

T1 - TDCOSMO IV

T2 - Hierarchical time-delay cosmography -- joint inference of the Hubble constant and galaxy density profiles

AU - Birrer, S.

AU - Shajib, A. J.

AU - Galan, A.

AU - Millon, M.

AU - Treu, T.

AU - Agnello, A.

AU - Auger, M.

AU - Chen, G. C. -F.

AU - Christensen, L.

AU - Collett, T.

AU - Courbin, F.

AU - Fassnacht, C. D.

AU - Koopmans, L. V. E.

AU - Marshall, P. J.

AU - Rusu, C. E.

AU - Sluse, D.

AU - Spiniello, C.

AU - Suyu, S. H.

AU - Wagner-Carena, S.

AU - Wong, K. C.

AU - Barnabè, M.

AU - Bolton, A. S.

AU - Czoske, O.

AU - Ding, X.

AU - Frieman, J. A.

AU - Vyvere, L. Van de

N1 - to be submitted to A&A, comments welcomed. Full analysis available at https://github.com/TDCOSMO/hierarchy_analysis_2020_public No embargo

PY - 2020/7/6

Y1 - 2020/7/6

N2 - The H0LiCOW collaboration inferred via gravitational lensing time delays a Hubble constant $H_0=73.3^{+1.7}_{-1.8}$ km s$^{-1}{\rm Mpc}^{-1}$, describing deflector mass density profiles by either a power-law or stars plus standard dark matter halos. The mass-sheet transform (MST) that leaves the lensing observables unchanged is considered the dominant source of residual uncertainty in $H_0$. We quantify any potential effect of the MST with flexible mass models that are maximally degenerate with H0. Our calculation is based on a new hierarchical approach in which the MST is only constrained by stellar kinematics. The approach is validated on hydrodynamically simulated lenses. We apply the method to the TDCOSMO sample of 7 lenses (6 from H0LiCOW) and measure $H_0=74.5^{+5.6}_{-6.1}$ km s$^{-1}{\rm Mpc}^{-1}$. In order to further constrain the deflector mass profiles, we then add imaging and spectroscopy for 33 strong gravitational lenses from the SLACS sample. For 9 of the SLAC lenses we use resolved kinematics to constrain the stellar anisotropy. From the joint analysis of the TDCOSMO+SLACS sample, we measure $H_0=67.4^{+4.1}_{-3.2}$ km s$^{-1}{\rm Mpc}^{-1}$, assuming that the TDCOSMO and SLACS galaxies are drawn from the same parent population. The blind H0LiCOW, TDCOSMO-only and TDCOSMO+SLACS analyses are in mutual statistical agreement. The TDCOSMO+SLACS analysis prefers marginally shallower mass profiles than H0LiCOW or TDCOSMO-only. While our new analysis does not statistically invalidate the mass profile assumptions by H0LiCOW, and thus their $H_0$ measurement relying on those, it demonstrates the importance of understanding the mass density profile of elliptical galaxies. The uncertainties on $H_0$ derived in this paper can be reduced by physical or observational priors on the form of the mass profile, or by additional data, chiefly spatially resolved kinematics of lens galaxies.

AB - The H0LiCOW collaboration inferred via gravitational lensing time delays a Hubble constant $H_0=73.3^{+1.7}_{-1.8}$ km s$^{-1}{\rm Mpc}^{-1}$, describing deflector mass density profiles by either a power-law or stars plus standard dark matter halos. The mass-sheet transform (MST) that leaves the lensing observables unchanged is considered the dominant source of residual uncertainty in $H_0$. We quantify any potential effect of the MST with flexible mass models that are maximally degenerate with H0. Our calculation is based on a new hierarchical approach in which the MST is only constrained by stellar kinematics. The approach is validated on hydrodynamically simulated lenses. We apply the method to the TDCOSMO sample of 7 lenses (6 from H0LiCOW) and measure $H_0=74.5^{+5.6}_{-6.1}$ km s$^{-1}{\rm Mpc}^{-1}$. In order to further constrain the deflector mass profiles, we then add imaging and spectroscopy for 33 strong gravitational lenses from the SLACS sample. For 9 of the SLAC lenses we use resolved kinematics to constrain the stellar anisotropy. From the joint analysis of the TDCOSMO+SLACS sample, we measure $H_0=67.4^{+4.1}_{-3.2}$ km s$^{-1}{\rm Mpc}^{-1}$, assuming that the TDCOSMO and SLACS galaxies are drawn from the same parent population. The blind H0LiCOW, TDCOSMO-only and TDCOSMO+SLACS analyses are in mutual statistical agreement. The TDCOSMO+SLACS analysis prefers marginally shallower mass profiles than H0LiCOW or TDCOSMO-only. While our new analysis does not statistically invalidate the mass profile assumptions by H0LiCOW, and thus their $H_0$ measurement relying on those, it demonstrates the importance of understanding the mass density profile of elliptical galaxies. The uncertainties on $H_0$ derived in this paper can be reduced by physical or observational priors on the form of the mass profile, or by additional data, chiefly spatially resolved kinematics of lens galaxies.

KW - astro-ph.CO

KW - astro-ph.GA

M3 - Article

JO - Astronomy and Astrophysics

JF - Astronomy and Astrophysics

SN - 0004-6361

ER -

ID: 23504083