Skip to content

The birth of binary direct-collapse black holes

Research output: Contribution to journalArticlepeer-review

Supermassive primordial stars forming during catastrophic baryon collapse in atomically-cooling halos at z ~ 15 - 20 may be the origin of the first quasars in the universe. However, no simulation to date has followed the evolution of these halos at resolutions that are high enough or for times that are long enough to determine if collapse actually produces SMSs. Here we report new cosmological simulations of baryon collapse in atomically-cooled halos for times that are long enough for SMSs to form and die as direct-collapse black holes (DCBHs). We find that the high infall rates required to build up such stars do persist until the end of their lives and could fuel the rapid growth of their BHs thereafter. Our simulations also demonstrate that binary and even small multiples of SMSs can form in low-spin and high-spin halos, respectively. This discovery raises the exciting possibility of detecting gravitational waves from DCBH mergers with LISA and tidal disruption events in the near infrared with the James Webb Space Telescope and ground-based telescopes in the coming decade.
Original languageEnglish
Article numberL4
Number of pages6
JournalAstrophysical Journal Letters
Volume892
Issue number1
DOIs
Publication statusPublished - 19 Mar 2020

Documents

  • The Birth of Binary Direct-Collapse Black Holes

    Rights statement: This Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period provided that all the terms of the licence are adhered to.

    Accepted author manuscript (Post-print), 2.14 MB, PDF document

    Due to publisher’s copyright restrictions, this document is not freely available to download from this website until: 19/03/21

    Licence: CC BY-NC-ND

Relations Get citation (various referencing formats)

ID: 19585263