Skip to content
Back to outputs

Thiosocius teredinicola gen. nov., sp. nov., a sulfur-oxidizing chemolithoautotrophic endosymbiont cultivated from the gills of the giant shipworm, Kuphus polythalamius

Research output: Contribution to journalArticle

Standard

Thiosocius teredinicola gen. nov., sp. nov., a sulfur-oxidizing chemolithoautotrophic endosymbiont cultivated from the gills of the giant shipworm, Kuphus polythalamius. / Altamia, Marvin A.; Shipway, J. Reuben; Concepcion, Gisela P.; Haygood, Margo G.; Distel, Daniel L.

In: International Journal of Systematic and Evolutionary Microbiology, Vol. 69, No. 3, 01.03.2019, p. 638-644.

Research output: Contribution to journalArticle

Harvard

Altamia, MA, Shipway, JR, Concepcion, GP, Haygood, MG & Distel, DL 2019, 'Thiosocius teredinicola gen. nov., sp. nov., a sulfur-oxidizing chemolithoautotrophic endosymbiont cultivated from the gills of the giant shipworm, Kuphus polythalamius', International Journal of Systematic and Evolutionary Microbiology, vol. 69, no. 3, pp. 638-644. https://doi.org/10.1099/ijsem.0.003143

APA

Altamia, M. A., Shipway, J. R., Concepcion, G. P., Haygood, M. G., & Distel, D. L. (2019). Thiosocius teredinicola gen. nov., sp. nov., a sulfur-oxidizing chemolithoautotrophic endosymbiont cultivated from the gills of the giant shipworm, Kuphus polythalamius. International Journal of Systematic and Evolutionary Microbiology, 69(3), 638-644. https://doi.org/10.1099/ijsem.0.003143

Vancouver

Author

Altamia, Marvin A. ; Shipway, J. Reuben ; Concepcion, Gisela P. ; Haygood, Margo G. ; Distel, Daniel L. / Thiosocius teredinicola gen. nov., sp. nov., a sulfur-oxidizing chemolithoautotrophic endosymbiont cultivated from the gills of the giant shipworm, Kuphus polythalamius. In: International Journal of Systematic and Evolutionary Microbiology. 2019 ; Vol. 69, No. 3. pp. 638-644.

Bibtex

@article{292f40a65d224750a36446bfd12e0ce1,
title = "Thiosocius teredinicola gen. nov., sp. nov., a sulfur-oxidizing chemolithoautotrophic endosymbiont cultivated from the gills of the giant shipworm, Kuphus polythalamius",
abstract = "A chemolithoautotrophic sulfur-oxidizing, diazotrophic, facultatively heterotrophic, endosymbiotic bacterium, designated as strain 2141T, was isolated from the gills of the giant shipworm Kuphus polythalamius (Teredinidae: Bivalvia). Based on its 16S rRNA sequence, the endosymbiont falls within a clade that includes the as-yet-uncultivated thioautotrophic symbionts of a marine ciliate and hydrothermal vent gastropods, uncultivated marine sediment bacteria, and a free-living sulfur-oxidizing bacterium ODIII6, all of which belong to the Gammaproteobacteria. The endosymbiont is Gram-negative, rod-shaped and has a single polar flagellum when grown in culture. This bacterium can be grown chemolithoautotrophically on a chemically defined medium supplemented with either hydrogen sulfide, thiosulfate, tetrathionate or elemental sulfur. The closed-circular genome has a DNA G+C content of 60.1 mol{\%} and is 4.79 Mbp in size with a large nitrogenase cluster spanning nearly 40 kbp. The diazotrophic capability was confirmed by growing the strain on chemolithoautotrophic thiosulfate-based medium without a combined source of fixed nitrogen. The bacterium is also capable of heterotrophic growth on organic acids such as acetate and propionate. The pH, temperature and salinity optima for chemolithoautotrophic growth on thiosulfate were found to be 8.5, 34 °C and 0.2 M NaCl, respectively. To our knowledge, this is the first report of pure culture of a thioautotrophic animal symbiont. The type strain of Thiosocius teredinicola is PMS-2141T.STBD.0c.01aT (=DSM 108030T).",
author = "Altamia, {Marvin A.} and Shipway, {J. Reuben} and Concepcion, {Gisela P.} and Haygood, {Margo G.} and Distel, {Daniel L.}",
year = "2019",
month = "3",
day = "1",
doi = "10.1099/ijsem.0.003143",
language = "English",
volume = "69",
pages = "638--644",
journal = "International Journal of Systematic and Evolutionary Microbiology",
issn = "1466-5026",
publisher = "Society for General Microbiology",
number = "3",

}

RIS

TY - JOUR

T1 - Thiosocius teredinicola gen. nov., sp. nov., a sulfur-oxidizing chemolithoautotrophic endosymbiont cultivated from the gills of the giant shipworm, Kuphus polythalamius

AU - Altamia, Marvin A.

AU - Shipway, J. Reuben

AU - Concepcion, Gisela P.

AU - Haygood, Margo G.

AU - Distel, Daniel L.

PY - 2019/3/1

Y1 - 2019/3/1

N2 - A chemolithoautotrophic sulfur-oxidizing, diazotrophic, facultatively heterotrophic, endosymbiotic bacterium, designated as strain 2141T, was isolated from the gills of the giant shipworm Kuphus polythalamius (Teredinidae: Bivalvia). Based on its 16S rRNA sequence, the endosymbiont falls within a clade that includes the as-yet-uncultivated thioautotrophic symbionts of a marine ciliate and hydrothermal vent gastropods, uncultivated marine sediment bacteria, and a free-living sulfur-oxidizing bacterium ODIII6, all of which belong to the Gammaproteobacteria. The endosymbiont is Gram-negative, rod-shaped and has a single polar flagellum when grown in culture. This bacterium can be grown chemolithoautotrophically on a chemically defined medium supplemented with either hydrogen sulfide, thiosulfate, tetrathionate or elemental sulfur. The closed-circular genome has a DNA G+C content of 60.1 mol% and is 4.79 Mbp in size with a large nitrogenase cluster spanning nearly 40 kbp. The diazotrophic capability was confirmed by growing the strain on chemolithoautotrophic thiosulfate-based medium without a combined source of fixed nitrogen. The bacterium is also capable of heterotrophic growth on organic acids such as acetate and propionate. The pH, temperature and salinity optima for chemolithoautotrophic growth on thiosulfate were found to be 8.5, 34 °C and 0.2 M NaCl, respectively. To our knowledge, this is the first report of pure culture of a thioautotrophic animal symbiont. The type strain of Thiosocius teredinicola is PMS-2141T.STBD.0c.01aT (=DSM 108030T).

AB - A chemolithoautotrophic sulfur-oxidizing, diazotrophic, facultatively heterotrophic, endosymbiotic bacterium, designated as strain 2141T, was isolated from the gills of the giant shipworm Kuphus polythalamius (Teredinidae: Bivalvia). Based on its 16S rRNA sequence, the endosymbiont falls within a clade that includes the as-yet-uncultivated thioautotrophic symbionts of a marine ciliate and hydrothermal vent gastropods, uncultivated marine sediment bacteria, and a free-living sulfur-oxidizing bacterium ODIII6, all of which belong to the Gammaproteobacteria. The endosymbiont is Gram-negative, rod-shaped and has a single polar flagellum when grown in culture. This bacterium can be grown chemolithoautotrophically on a chemically defined medium supplemented with either hydrogen sulfide, thiosulfate, tetrathionate or elemental sulfur. The closed-circular genome has a DNA G+C content of 60.1 mol% and is 4.79 Mbp in size with a large nitrogenase cluster spanning nearly 40 kbp. The diazotrophic capability was confirmed by growing the strain on chemolithoautotrophic thiosulfate-based medium without a combined source of fixed nitrogen. The bacterium is also capable of heterotrophic growth on organic acids such as acetate and propionate. The pH, temperature and salinity optima for chemolithoautotrophic growth on thiosulfate were found to be 8.5, 34 °C and 0.2 M NaCl, respectively. To our knowledge, this is the first report of pure culture of a thioautotrophic animal symbiont. The type strain of Thiosocius teredinicola is PMS-2141T.STBD.0c.01aT (=DSM 108030T).

U2 - 10.1099/ijsem.0.003143

DO - 10.1099/ijsem.0.003143

M3 - Article

VL - 69

SP - 638

EP - 644

JO - International Journal of Systematic and Evolutionary Microbiology

JF - International Journal of Systematic and Evolutionary Microbiology

SN - 1466-5026

IS - 3

ER -

ID: 16119029