Skip to content

Tissue viability imaging of skin microcirculation following exposure to whole body cryotherapy (-110°C) and cold water immersion (8°C)

Research output: Contribution to journalArticlepeer-review

Cryotherapy is currently used in various clinical, rehabilitative and sporting settings. However, very little is known regarding the impact of cooling on the microcirculatory response. Objectives: The present study sought to examine the influence of two commonly employed modalities of cryotherapy, whole body cryotherapy (WBC; -110°C) and cold water immersion (CWI; 8±1°C), on skin microcirculation in the mid thigh region. Methods: The skin area examined was a 3 ´ 3 cm located between the most anterior aspect of the inguinal fold and the patella. Following 10 minutes of rest, 5 healthy, active males were exposed to either WBC for 3 minutes or CWI for 5 minutes in a randomised order. Volunteers lay supine for five minutes after treatment, in order to monitor the variation of red blood cell (RBC) concentration in the region of interest for a duration of 40 minutes. Microcirculation response was assessed using a non-invasive, portable instrument known as a Tissue Viability imaging system. After a minimum of seven days, the protocol was repeated. Subjective assessment of the volunteer’s thermal comfort and thermal sensation was also recorded. Results: RBC was altered following exposure to both WBC and CWI but appeared to stabilise approximately 35 minutes after treatments. Both WBC and CWI affected thermal sensation (p < 0.05), however no between group differences in thermal comfort or sensation were recorded (p > 0.05). Conclusions: As both WBC and CWI altered RBC, further study is necessary to examine the mechanism for this alteration during whole body cooling.
Original languageEnglish
Pages (from-to)243-250
JournalArchives of Exercise in Health and Disease
Issue number1
Publication statusPublished - 2014
Externally publishedYes


  • Tissue viability imaging

    Rights statement: Open access journal.

    Final published version, 1.13 MB, PDF document

    Licence: CC BY-NC-ND

Related information

Relations Get citation (various referencing formats)

ID: 2091426