Skip to content
Back to outputs

Weak lensing of Type Ia Supernovae from the Dark Energy Survey

Research output: Contribution to journalArticlepeer-review

Standard

Weak lensing of Type Ia Supernovae from the Dark Energy Survey. / DES Collaboration; Macaulay, E.; Bacon, D.; Nichol, R. C.; Avila, S.

In: Monthly Notices of the Royal Astronomical Society, Vol. 496, No. 3, 01.08.2020, p. 4051-4059.

Research output: Contribution to journalArticlepeer-review

Harvard

DES Collaboration, Macaulay, E, Bacon, D, Nichol, RC & Avila, S 2020, 'Weak lensing of Type Ia Supernovae from the Dark Energy Survey', Monthly Notices of the Royal Astronomical Society, vol. 496, no. 3, pp. 4051-4059. https://doi.org/10.1093/mnras/staa1852

APA

DES Collaboration, Macaulay, E., Bacon, D., Nichol, R. C., & Avila, S. (2020). Weak lensing of Type Ia Supernovae from the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 496(3), 4051-4059. https://doi.org/10.1093/mnras/staa1852

Vancouver

DES Collaboration, Macaulay E, Bacon D, Nichol RC, Avila S. Weak lensing of Type Ia Supernovae from the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society. 2020 Aug 1;496(3):4051-4059. https://doi.org/10.1093/mnras/staa1852

Author

DES Collaboration ; Macaulay, E. ; Bacon, D. ; Nichol, R. C. ; Avila, S. / Weak lensing of Type Ia Supernovae from the Dark Energy Survey. In: Monthly Notices of the Royal Astronomical Society. 2020 ; Vol. 496, No. 3. pp. 4051-4059.

Bibtex

@article{f5a0b768904644f18dc8e97f78ac3d8e,
title = "Weak lensing of Type Ia Supernovae from the Dark Energy Survey",
abstract = "We consider the effects of weak gravitational lensing on observations of 196 spectroscopically confirmed Type Ia Supernovae (SNe Ia) from years 1 to 3 of the Dark Energy Survey (DES). We simultaneously measure both the angular correlation function and the non-Gaussian skewness caused by weak lensing. This approach has the advantage of being insensitive to the intrinsic dispersion of SNe Ia magnitudes. We model the amplitude of both effects as a function of σ8, and find σ8 =1.2+0.9−0.8⁠. We also apply our method to a subsample of 488 SNe from the Joint Light-curve Analysis (JLA; chosen to match the redshift range we use for this work), and find σ8 =0.8+1.1−0.7⁠. The comparable uncertainty in σ8 between DES–SN and the larger number of SNe from JLA highlights the benefits of homogeneity of the DES–SN sample, and improvements in the calibration and data analysis.",
keywords = "cosmological parameters, cosmology: observations, large-scale structure of the universe, RCUK, STFC, ST/N000668/1",
author = "{DES Collaboration} and E. Macaulay and D. Bacon and Nichol, {R. C.} and Davis, {T. M.} and J. Elvin-Poole and D. Brout and D. Carollo and K. Glazebrook and Hinton, {S. R.} and C. Lidman and A. M{\"o}ller and M. Sako and D. Scolnic and Sommer, {N. E.} and Tucker, {B. E.} and Abbott, {T. M. C.} and M. Aguena and J. Annis and S. Avila and E. Bertin and S. Bhargava and D. Brooks and Burke, {D. L.} and Rosell, {A. Carnero} and Kind, {M. Carrasco} and J. Carretero and Castander, {F. J.} and M. Costanzi and Costa, {L. N. da} and S. Desai and Diehl, {H. T.} and P. Doel and B. Flaugher and Foley, {R. J.} and J. Garc{\'i}a-Bellido and E. Gaztanaga and Gerdes, {D. W.} and D. Gruen and Gruendl, {R. A.} and J. Gschwend and G. Gutierrez and Hollowood, {D. L.} and K. Honscheid and D. Huterer and James, {D. J.} and K. Kuehn and N. Kuropatkin and O. Lahav and M. Lima and Maia, {M. A. G.}",
year = "2020",
month = aug,
day = "1",
doi = "10.1093/mnras/staa1852",
language = "English",
volume = "496",
pages = "4051--4059",
journal = "MNRAS",
issn = "0035-8711",
publisher = "Oxford University Press",
number = "3",

}

RIS

TY - JOUR

T1 - Weak lensing of Type Ia Supernovae from the Dark Energy Survey

AU - DES Collaboration

AU - Macaulay, E.

AU - Bacon, D.

AU - Nichol, R. C.

AU - Davis, T. M.

AU - Elvin-Poole, J.

AU - Brout, D.

AU - Carollo, D.

AU - Glazebrook, K.

AU - Hinton, S. R.

AU - Lidman, C.

AU - Möller, A.

AU - Sako, M.

AU - Scolnic, D.

AU - Sommer, N. E.

AU - Tucker, B. E.

AU - Abbott, T. M. C.

AU - Aguena, M.

AU - Annis, J.

AU - Avila, S.

AU - Bertin, E.

AU - Bhargava, S.

AU - Brooks, D.

AU - Burke, D. L.

AU - Rosell, A. Carnero

AU - Kind, M. Carrasco

AU - Carretero, J.

AU - Castander, F. J.

AU - Costanzi, M.

AU - Costa, L. N. da

AU - Desai, S.

AU - Diehl, H. T.

AU - Doel, P.

AU - Flaugher, B.

AU - Foley, R. J.

AU - García-Bellido, J.

AU - Gaztanaga, E.

AU - Gerdes, D. W.

AU - Gruen, D.

AU - Gruendl, R. A.

AU - Gschwend, J.

AU - Gutierrez, G.

AU - Hollowood, D. L.

AU - Honscheid, K.

AU - Huterer, D.

AU - James, D. J.

AU - Kuehn, K.

AU - Kuropatkin, N.

AU - Lahav, O.

AU - Lima, M.

AU - Maia, M. A. G.

PY - 2020/8/1

Y1 - 2020/8/1

N2 - We consider the effects of weak gravitational lensing on observations of 196 spectroscopically confirmed Type Ia Supernovae (SNe Ia) from years 1 to 3 of the Dark Energy Survey (DES). We simultaneously measure both the angular correlation function and the non-Gaussian skewness caused by weak lensing. This approach has the advantage of being insensitive to the intrinsic dispersion of SNe Ia magnitudes. We model the amplitude of both effects as a function of σ8, and find σ8 =1.2+0.9−0.8⁠. We also apply our method to a subsample of 488 SNe from the Joint Light-curve Analysis (JLA; chosen to match the redshift range we use for this work), and find σ8 =0.8+1.1−0.7⁠. The comparable uncertainty in σ8 between DES–SN and the larger number of SNe from JLA highlights the benefits of homogeneity of the DES–SN sample, and improvements in the calibration and data analysis.

AB - We consider the effects of weak gravitational lensing on observations of 196 spectroscopically confirmed Type Ia Supernovae (SNe Ia) from years 1 to 3 of the Dark Energy Survey (DES). We simultaneously measure both the angular correlation function and the non-Gaussian skewness caused by weak lensing. This approach has the advantage of being insensitive to the intrinsic dispersion of SNe Ia magnitudes. We model the amplitude of both effects as a function of σ8, and find σ8 =1.2+0.9−0.8⁠. We also apply our method to a subsample of 488 SNe from the Joint Light-curve Analysis (JLA; chosen to match the redshift range we use for this work), and find σ8 =0.8+1.1−0.7⁠. The comparable uncertainty in σ8 between DES–SN and the larger number of SNe from JLA highlights the benefits of homogeneity of the DES–SN sample, and improvements in the calibration and data analysis.

KW - cosmological parameters

KW - cosmology: observations

KW - large-scale structure of the universe

KW - RCUK

KW - STFC

KW - ST/N000668/1

U2 - 10.1093/mnras/staa1852

DO - 10.1093/mnras/staa1852

M3 - Article

VL - 496

SP - 4051

EP - 4059

JO - MNRAS

JF - MNRAS

SN - 0035-8711

IS - 3

ER -

ID: 21896623