The Niemcza diorites and monzodiorites (Sudetes, SW Poland): a record of changing geotectonic setting at ca. 340 Ma

Anna PIETRANIK1,*, Craig STOREY2 and Jakub KIERCZAK3

1 Institute of Geological Sciences, University of Wrocław, M. Borna 9, 50-204 Wrocław, Poland
2 School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom

Granites sensu lato in the Sudetes intruded in several episodes during the Variscan orogeny recording different stages of crust and mantle evolution. Correlating precise ages with geochemistry of the Variscan granites provides information on the evolution of these sources within the Variscan orogen. The Variscan intrusive rocks from the Niemcza Zone (Bohemian Massif, Sudetes, SW Poland) include undeformed dioritic to syenitic rocks and magmatically foliated granodiorites. In this study we analysed low SiO2 (48–53 wt.%) monzodioritic rocks from Przedborowa and Koźmice. The monzodiorites contain late-magmatic zircons with ages of 341.8 ± 1.9 Ma for Przedborowa and 335.6 ± 2.3 Ma for Koźmice, interpreted as emplacement ages of the dioritic magmas. Older Przedborowa rocks are lower in K, Mg, Rb and Ni than the Koźmice rocks and similar compositional trend is also observed in the Central Bohemian Plutonic Complex. The implication is that the mantle underlying the Niemcza Zone became more enriched from ca. 342 to ca. 336 Ma, probably following the collision of the Saxothuringian and Moldanubian/Lugian domains. The magmatism related to the collision occurred ca. 12 Ma later than that in the Central Bohemian Plutonic Complex, but was accompanied by a similar change in magma chemistry from high-K (Przedborowa) to shoshonitic (Koźmice, Kośmín in enclaves) and probably to ultrapotassic (Wilków Wielki).

Key words: Bohemian Massif, Niemcza Zone, diorites, LA-ICPMS zircon age, potassic magmatism.

INTRODUCTION

Variscan granitoid magmatism in the Sudetes spans from ca. 350 to ca. 295 Ma (Mazor et al., 2007 and references therein). Recent zircon dating provides precise ages and shows that the magmatism in the Sudetes occurred in three major episodes:

- ca. 340 Ma episode, which includes emplacement of granodioritic and monzonic magmas in the Odra Fault Zone (344 ± 1 Ma; Dör et al., 2006), granodioritic and dioritic rocks in the Niemcza Zone (336 ± 3 Ma to 342 ± 2 Ma; Oliver et al., 1993) and leucocratic granite bodies within the Gogolów-Jordanów serpentinite massif (337 ± 4 Ma; Kryza, 2011);

- ca. 320 Ma episode, which includes the Karkonosze Granite (322 ± 3 Ma; Kryza et al., 2012) and the Bożnowice tonalite from the Strzelin Massif (324 ± 4 Ma; Oberc-Dziedzic et al., 2010);

- ca. 300 Ma episode, which includes granitic to tonalitic rocks in the Strzelin Massif (306 ± 3 Ma to 294 ± 3 Ma; Oberc-Dziedzic et al., 2010; Oberc-Dziedzic and Kryza, 2012) and the Strzegom-Sobótka granites (294–310 Ma; Turniak et al., 2005).

Precise dating and recognition of magmatic episodes is important for larger scale correlations of changing tectonic settings during the Variscan orogeny. For example, ca. 340 Ma magmatism is widespread in the Bohemian Massif and is represented by ultrapotassic rocks (340 ± 8 Ma to 343 ± 6 Ma – Holub, 1997; 337 ± 1 Ma – Janoušek and Gerdes, 2003; 342 ± 3 Ma – Kusiak et al., 2010; 335 ± 0.57 Ma – Kotková et al., 2010), which include numerous bodies of high-Mg, high-K melasyenites to melagranites (Wenzel et al., 1997). The main scenario for high-K, high-Mg magmatism involves interaction between crustal and enriched mantle sources coupled with fractional crystallisation (Janoušek and Holub, 2007; Parat et al., 2010). Pinpointing the crustal source involved in the ultrapotassic rocks’ geneses strongly depends on precise and accurate dating of the magmatism (Janoušek and Holub, 2007; Kotková et al., 2010). Leichmann and Gawęda (2002) suggested that the Niemcza Zone intrusives can be correlated with the ultrapotassic rocks from other localities in the Bohemian Massif and by implication they could have been formed in a similar geotectonic setting. However, ages of the Niemcza Zone dioritic rocks and their detailed geochemical characteristics have been so far insufficient to verify this hypothesis. Previous dating of the Koźmice granodiorite by ID-TIMS (isotope dilution – thermal ionization mass spectrometry) of zircon yielded a Concordia age of 338 ±2/–3 Ma (Oliver et al., 1993) similar to that of other ultrapotassic rocks (e.g., Holub, 1997; Janoušek and Gerdes, 2003; Kotková et al., 2010; Kusiak et al., 2010). Pegmatitic amphiboles from Przedborowa yielded a similar age of 335 ± 5 Ma.
The initial K-feldspar (albite, amphibole and biotite with minor mafic enclaves) may be divided into two groups: dioritic rocks, called the Przedborowa type and granitic rocks called the Koźmin type (Oziedzicowa, 1963).

The dioritic rocks (Przedborowa type) form fine-grained dikes comprising monzodiorites, quartz diorites, quartz syenites and tonalites. They are composed predominately of plagioclase, amphibole and biotite with minor clinoxyroxene and K-feldspar (Oziedzicowa, 1963; Puziewicz, 1987, 1988, 1990). The initial \(^{87}\text{Sr}/^{86}\text{Sr}_{i}\) is 0.70598 for diorites from Przedborowa (Lorenc, 1998; Lorenc and Kennan, 2007, \(^{87}\text{Sr}/^{86}\text{Sr}_{i}\), recalculated using \(^{87}\text{Rb}\) decay constant of Nebel et al., 2011).

The granitic rocks (Koźmin type) locally show effects of ductile dextral shearing (Puziewicz et al., 1992, Aleksandrowski et al., 1997) interpreted as magmatic deformation (Puziewicz, 1992). The rocks are medium-grained, rich in dioritic enclaves and comprise granodiorites, quartz monzonites, quartz monzodiorites and rare granites. They are composed of various proportions of quartz, feldspars, biotite and amphibole (Puziewicz, 1992; Puziewicz and Oberc-Oziedzic, 1995; Lorenc, 1998; Lorenc and Kennan, 2007). A petrological study of the Koźmin granodiorite gave estimates of magma crystallization temperature of 730–850°C and the pressure of emplacement at 4 ± 1 kbars (Puziewicz and Radkowska, 1990; Puziewicz, 1992). The initial \(^{87}\text{Sr}/^{86}\text{Sr}_{i}\) is 0.7077–0.7079 for the granodiorites in Koźmin (Lorenc, 1998; Lorenc and Kennan, 2007).

The granitic rocks were emplaced contemporaneously or later than the dioritic rocks (Puziewicz, 1992). The dioritic rocks are undeformed and the granitic rocks are weakly foliated and are characterized by N–S and E–W trending foliation and dextral shearing (Puziewicz, 1992). Lack of deformation in the dioritic rocks as well as different shear sense recorded in the granitic rocks compared to that in the surrounding mylonites (dextral versus sinistral) indicate that the intrusive rocks were younger than the pervasive deformation in mylonites (Mazur and Puziewicz, 1995). Alternatively, the intrusive rocks may have survived unaffected by the later sinistral shearing (Aleksandrowski et al., 1997).
Fig. 2. Geological map showing sampling sites of the dioritic/syenitic rocks analysed in this study (modified after Trepka and Gawroński, 1957; Badura and Dziemiańczuk, 1981; Cwojdziński and Walczak-Augustyniak, 1983; Cymerman and Walczak-Augustyniak, 1986)
ANALYTICAL METHODS

ZIRCON DATING

Approximately 3 kg of fine-grained, dioritic rocks from the Przedborowa and Koźmice quarries were crushed and sieved. Heavy mineral concentrates were separated from the sieved fractions by panning and zircons were handpicked and mounted in an epoxy ring. The grains were examined in charge contrast images. U-Pb analyses of zircon were carried out at the University of Bristol using a Thermo-Scientific Element single-collector ICP–MS (Inductively Coupled Plasma – Mass Spectrometry) coupled to a New Wave 193HE laser ablation sampling system. The single measurement comprised: 20 s of gas blank measurement, 40 s of zircon measurement and 1 minute of washing out. Data were corrected for U-Pb fractionation and instrumental mass bias by standard bracketing with repeated measurements of the Plešovice zircon with an accepted 206Pb/238U age of 337.13 ± 0.37 Ma (Šíma et al., 2008). During the session 15 analyses of the Plešovice zircon yielded a 206Pb/238U concordia age of 338.1 ± 1.1 Ma showing good within-run reproducibility. Data reduction was carried out with the software package GLITTER® (GEMOC – The ARC National Key Centre for Geochemical Evolution and Metallurgy of Continents). The plotting and concordia age calculation was done by Isoplot (Ludwig, 1999), all errors are plotted and all ages are quoted at the 2σ uncertainty level.

No 204Pb correction was applied to the data. 204Pb was measured during the session together with 206Hg and Hg correction was applied to 206Pb resulting in values below detection limit for 204Pb. The reference zircon 91 500 with an accepted age 206Pb/238U of 1062.4 ± 0.8 (Wiedenbeck et al., 1995) was analysed as unknown to check for data quality. The 206Pb/238U age for the 91 500 zircon measured in this study is 1065 ± 4.6 Ma (n = 14, MSWD = 0.8), in agreement with the age published by Wiedenbeck et al. (1995). Also, at the same session, zircons from the Gesiniec tonalite were analysed and yielded a Concordia age of 294.7 ± 1.5 Ma (n = 10, MSWD = 0.7), which is identical to the SHRIMP age of 294.7 ± 2.8 Ma obtained recently for the tonalite (Ober-Rdziedzic and Kryza, 2012). Correct values for 91 500, Gesiniec zircon as well as Concordia ages for analysed zircons from the Niemcza Zone suggest that no 204Pb correction was required along with the fact that 204Pb could not be detected.

CHEMICAL ANALYSES

Whole rock geochemical analyses for ten samples were done in the ACME Analytical Laboratory (4 from Przedborowa, 2 from Koźmice and 4 of enclaves from Kosmin). Major elements were analysed by ICP-ES (Inductively Coupled Plasma Emission Spectrometry) and trace elements were analysed by ICP-MS following fusion of samples in LiBO₂/Li₂B₂O₇. The analytical reproducibility (2SD), as estimated from 10 analysis of standard SO18/CSC is below 0.8% for major elements, and from 0.8 (Nd) to 8% (La) for trace elements at 95% confidence limits. Analytical accuracy (2SD), as estimated from the real concentration in the standard SO18/CSC is below 4% for major elements and from 4 (U) to 26% (Y) for trace elements at 95% confidence limits.

An additional 6 samples were analysed for major elements at the laboratory of the Institute of Geological Sciences, University of Wrocław, Poland by a combination of AAS (Atomic Absorption Spectroscopy) and titration.

RESULTS

MONZODIORITE FROM KOŹMICE:
PETROLOGY AND GEOCHEMICAL COMPOSITION

The monzodiorite from Koźmice crops out in the quarry on Strach Hill. The monzodiorite is in a sharp intrusive contact with granodiorite, the latter was dated by Olivier et al. (1993) at 338 +2/−3 Ma. Recrystallisation of monzodiorite at the contact with granodiorite indicates that the granodiorite magma intruded into already crystallised, older monzodiorite (Puziewicz, 1992). The petrology of monzodiorite was described in detail by Puziewicz (1988, 1992) and it is summarised here. The monzodiorite (called also vaugnerite) is fine-grained, undeformed and is composed of plagioclase, biotite and pyroxene. Zircon occurs within biotite, often at its rims (Fig. 3A). Pyroxene is replaced by amphibole close to the contact with granodiorite. Three samples of the monzodiorite were analysed in this study (two within approximately 20 cm of the contact and one a few metres from the contact with granodiorite). Zircons were separated from the sample collected farther away from the contact. This sample contains less Si, Cr and Ni and slightly less K and Mg than the samples collected near the contact, other elements concentrations are similar (Appendix 1). The dated sample has 52 wt% SiO₂ and moderate amounts of K₂O (~3 wt.%). It is also characterized by low Ni (8 ppm) and moderate Rb (150 ppm).

MONZODIORITE FROM PRZEDBOROWA:
PETROLOGY AND GEOCHEMICAL COMPOSITION

Petrology of the quartz monzonidiorite, the dominating rock in the Przedborowa Quarry, was described in detail by Dziedzicowa (1963) and Puziewicz (1990) and is summarised here. The monzonidiorite forms an approximately 100 m thick, undeformed dike within amphibolites. The rock is fine-grained and composed predominately of plagioclase, amphibole (hornblende), biotite and alkali feldspar with minor quartz. Two dominating types of the monzonidiorite include: equigranular monzonidiorite and porphyritic monzonidiorite (with biotite phenocrysts). Two samples of each type were analysed in this study for major and trace elements and two samples of the equigranular type were analysed for major elements only (Appendix 1). Zircons were separated from the equigranular type. Zircon occurs within hornblende and biotite, usually close to their rims (Fig. 3B). The porphyritic type contains more Si and K and less Fe, Mg, Ca, Ti than the equigranular type (Appendix 1). It is also richer in incompatible elements, such as Rb, Cs, Ba, Hf, U, Zr, but not LREE. The low-SiO₂ samples (51–52 wt %) have moderate amounts of K₂O (~2–3 wt %). They are also characterized by low Ni (6–9 ppm) and Rb concentrations (50–80 ppm).

* Supplementary data associated with this article can be found, in the online version, at doi: 10.7306/gq.1084
The Niemcza diorites and moznodiorites (Sudetes, SW Poland): a record of changing geotectonic setting at ca. 340 Ma

Fig. 3A, B – microscope view of Koźmice and Przedborowa monzodiorite dated in this study (plane polarized light), typical occurrence of zircon grains is marked by arrows; C–F – charge contrast images of zircons; the linear pits represent the material ablated for dating; C, D – Koźmice; E, F – Przedborowa

Bt – biotite, Hbl – hornblende, Kfds – potassium feldspar, Pl – plagioclase, Qtz – quartz, Zrn – zircon
MONZODIORITIC ENCLAVES FROM THE KOŚMIN QUARRY AND OTHER ROCKS

Four monzodioritic enclaves were collected from the Kośmin Quarry in order to compare their geochemistry to that of Przedborowa and Koźmice. The enclaves are porphyritic (plagioclase phenocrysts) and are composed of plagioclase, amphibole, biotite, K-feldspar, pyroxene, and quartz. The enclaves are low in SiO$_2$ (50–52 wt.%) and high in MgO (6–10 wt.%) and K$_2$O (~4 wt.%). They are also characterized by high Rb (150–250 ppm) and high Ni (21–165 ppm), but low Zr (113–168 ppm).

Major element composition was also analysed in dioritic rocks from other localities in the Niemcza Zone (Appendix 1): (1) quartz syenite from Piła, composed of amphibole, alkali feldspar, plagioclase, and quartz (Puziewicz, 1987), (2) quartz diorite from Klosnik composed of plagioclase, biotite, amphibole, pyroxene, and quartz and (3) syenite from Wilków Wielki composed of alkali feldspar, biotite, amphibole, plagioclase, quartz, and apatite. The rock from Wilków Wielki is chemically distinct from other rocks having low SiO$_2$ and Al$_2$O$_3$ and high MgO, CaO, K$_2$O ad P$_2$O$_5$ (Appendix 1).

ZIRCON AGES

Zircons from both dioritic samples are euhedral and short to normal prismatic (Fig. 3C–F). They show weak oscillatory zoning in charge contrast images. The grains from Przedborowa are larger (approximately 100 mm or more in the diameter perpendicular to z axis) than the grains from Koźmice (less than 100 mm in the diameter). Ten zircon grains from Przedborowa and nine grains from Koźmice were analysed (one analysis per grain, Fig. 3C–F, all grains). All ages are Concordia within ± 5%, none of the analyses were rejected (Appendix 1). The zircons from Przedborowa yield a single Concordia age of 341.8 ± 1.9 Ma (Fig. 4A). All nine grains from Koźmice do not yield a Concordia age, as two of the grains (Koz-1, Koz-8) are older with an age of ca. 350 Ma (Appendix 1). The remaining seven grains yield a Concordia age of 335.6 ± 2.3 Ma (Fig. 4B). Ten grains from Przedborowa and seven grains from Koźmice yield a single Concordia age of 339.2 ± 1.9 Ma, but with an MSWD of 3.1.

DISCUSSION

NIEMCZA MAGMATISM: OVER 10 MY OF MAGMA EMLACEMENT?

The interpretation of zircon ages requires knowledge of when the zircon crystallised during magma evolution. Dioritic rocks are low in silica and zirconium and, therefore, undersaturated in zircon until late in the crystallisation history (Watson and Harrison, 1983). The inherited component in dioritic zircon is scarcely present and that makes interpretation of zircon ages more straightforward. The temperature of zircon saturation calculated in this study (following zircon saturation thermometer of Watson and Harrison, 1983) is below 700°C for Przedborowa and below 660°C for Koźmice, much lower than the typical liquidus and also solidus temperatures for quartz diorite magmas (Pietranik et al., 2009). After approximately 70% of crystallisation, zircon saturation is around 800°C in the studied compositions. The implication is that zircon in monzodioritic magmas crystallises late and its age should be interpreted as the age of the emplacement of.
magma. It is consistent with the structural position of zircon in Koźmice and Przedborowa, which forms euhedral grains enclosed in the rims of mafic minerals (Fig. 3A, B).

The Concordia ages for the Przedborowa and Koźmice monzodiorites are ca. 342 ± 2 Ma and 336 ± 2 Ma suggesting that the Przedborowa intrusion might be older. However, only seven out of nine zircons from Koźmice yielded a concordia age, whereas two grains are older (ca. 350 Ma), which makes the age interpretation for Koźmice ambiguous. Therefore, the best constraint on the age of the monzodiorite emplacement is ca. 342 ± 2 Ma obtained from zircons from Przedborowa.

Interestingly, the age distribution is similar to that from the Koźmice monzodiorite and was noted by Kryza (2011) for leucogranite from the Gogołów-Jordanów serpentinite massif (dated by U-Pb, SHRIMP). The zircons from the leucogranite also include a main age population around 337 Ma and a single zircon grain with an age around 350 Ma. The slight “smearing” of ages along the concordia plot for both the Koźmice monzodiorite and Gogołów-Jordanów leucogranite may suggest that the real age for both intrusions is older and the ages were affected by Pb-loss. However, it would be surprising if both the monzodiorite and leucogranite, magmas with distinct thermal histories and zircon saturation temperatures, were similarly affected by Pb-loss. Also, the Koźmice grains are small and homogenous, similar to grains crystallised in quickly cooled, low Si magmas. They do not show any features typical of hydrothermal alteration (Kusiak et al., 2009) or Pb-loss (Kryza et al., 2012). Alternatively, the 336–337 Ma age could be the age of emplacement for both the Koźmice and Gogołów-Jordanów intrusions and the older 350 Ma zircons are inherited. The older grains from Koźmice have similar colour and morphology to the younger, clustered analyses and similar characteristics of 350 Ma and younger grains were also noted for the Gogołów-Jordanów leucogranite (Kryza, 2011). In this case the inherited signal is real, as might be suggested by the occurrence of similar grains in two localities, the 350 Ma old grains probably come from a pluton, initially emplaced below the level of the Koźmice and Gogołów-Jordanów intrusions emplacement. The injection of new magma at ca. 336 Ma could have disintegrated the older, already solidified rocks. Remelting of this older igneous source could have also produced leucogranitic melts, such as those which intruded the Gogołów-Jordanów massif (Kryza, 2011). Recycling of inherited zircon grains, only a few Ma older than the intrusion age, is observed in other intrusions world-wide (e.g., Coleman et al., 2004).

In this light, the age of ca. 342 Ma obtained for homogeneous zircon population in Przedborowa seems to be a good approximation of the emplacement age for dioritic magmas in the Niemcza Zone, but the second episode of magmatic activity could have taken place several million years later. Also, the magmatism in the area could have started before 350 Ma and could be represented by a hidden pluton.

GEOCHEMISTRY OF THE NIEMCZA ZONE ROCKS: FROM HIGH-K TO ULTRAPOTASSIC MAGMATISM

The geochemical composition of dioritic rocks from the Niemcza Zone shows that they are mostly shoshonitic (Fig. 5A;
Peccerillo and Taylor, 1976), with scarce high-K (Przedborowa) and ultrapotassic rocks (Wilków Wielki and one enclave from Kośmín). Comparing rocks with low SiO₂ content (48–53 wt.%), shows that Przedborowa has generally lower K₂O, MgO, Rb and Ni from all other diorites in the Niemcza Zone. The implication is that if the age difference between Przedborowa and Kośmín is real it correlates with a change in magma chemistry from high-K to shoshonitic over approximately 5 Ma. Interestingly, a similar change was observed in other intrusive rocks from the Bohemian Massif (Janoušek et al., 2000). Magmatic rocks with ages of 375–335 Ma are widespread in the Central Bohemian Massif and they are interpreted as related to the subduction and the subsequent collision of the Saxothuringian plate under the Teplá-Barrandian unit (Schulmann et al., 2009; Žák et al., 2011).

Between 354 and ca. 340 Ma, the magma chemistry changed from normal high-K calc-alkaline (e.g., Sázava pluton at 354 ± 4 Ma; Janoušek et al., 2004) to shoshonitic (e.g., Blatná suite 346 ± 10 Ma; Holub, 1997; 346 ± 2 Ma; Janoušek et al., 2010 or Klatoťov granodiorite 347 +3/–4 Ma, Dörr and Zulauf, 2010) and to ultrapotassic (e.g., Třebíč pluton, 341.6 ± 2.8 Ma; Kusiak et al., 2010 or Jihlava pluton, 335.1 ± 0.6 Ma; Kotková et al., 2010). This change in geochemistry was observed in both dioritic and granitic rocks and for the dioritic magmas it indicates a change in mantle geochemistry as the mantle evolves from slightly depleted at ca. 350 Ma to strongly enriched at ca. 340 Ma (Janoušek et al., 2004; Janoušek and Holoub, 2007). Comparison of geochemical composition between the dioritic rocks from the Niemcza Zone and those from the Central Bohemian Plutonic Complex as well as Třebíč and Jihlava plutons (Figs. 5 and 6) shows that most of the Niemcza Zone diorites are compositionally similar to the high-K calc-alkaline to shoshonitic rocks from the Central Bohemian Plutonic Complex that intruded at ca. 354–346 Ma (high-K calc-alkaline rocks of the Sázava suite and shoshonitic rocks of the Blatná suite). Normal calc-alkaline rocks also occurring in the Sázava suite were not found in the Niemcza Zone. So far only the diorite rock from Wilków Wielki and dioritic enclave from Kośmín have geochemical composition similar to that of the ultrapotassic intrusions with intrusion ages around 340–335 Ma. These two rocks were not dated and further age – geochemistry correlations cannot be done.

The general implication is that the dioritic magmatism in the Niemcza Zone records a change in the chemistry of intrusive rocks similar to that observed in the Central Bohemian Plutonic Complex from 354 to 346 Ma (high-K calc-alkaline to shoshonitic), but the change in the Niemcza Zone occurred probably between 342 and 336 Ma ago, ca. 10 Ma later. The geochemical evolution of magmas in the Central Bohemian Plutonic Complex is related to the subduction of Saxothuringian domain under the

Fig. 6. Trace element composition of rocks from the Niemcza Zone compared with other intrusive rocks of similar ages from the Bohemian Massif

Data sources for the Czech rocks: Janoušek et al. (2000, 2004), Kotková et al. (2010) and Parat et al. (2010)
The monzodioritic rocks from the Niemcza Zone record a change in geochemistry from high-K to shoshonitic magmas over less than 10 Ma. Zircon yields magma emplacement ages of 341.8 ± 1.9 Ma for Przedsborowa (high-K) and 335.6 ± 2.3 Ma for Koźmice (shoshonitic). The difference in chemical composition of Przedsborowa and Koźmice rocks reflects the increasing enrichment of the underlying mantle from ca. 342 to ca. 336 Ma. Similar evolution of mantle composition is recorded in rocks from the Central Bohemian Plutonic Complex from ca. 354 to ca. 347 Ma, therefore over a similar time-span as that suggested for the Niemcza Zone. Chemical and temporal correlations between the two areas suggest that (1) similar geotectonic setting developed diachronously in different parts of the Bohemian Massif and (2) the time-span of ca. 6–7 My is required to evolve from high-K to shoshonitic magmatism. The ultrapotassic rocks, such as those which affected the Czech part of the Bohemian Massif at 340–335 Ma, were not dated in this study, but syenites from Wilków Wielki are potential candidates to constrain timing of the ultrapotassic magmatism in the Sudetes.

Acknowledgements. J. Puziewicz and J. Leichmann are thanked for the field trip during which samples were collected and for interesting discussion that started work on this project. J. Puziewicz is thanked for helpful comments on the earlier version of this manuscript. K. Dymna is thanked for zircon separation, Master thesis of J. Gruszczytyska and A. Winiecka helped to locate representative samples of the Kosmin enclaves. M. Kusiak, S. Mazur and J. Žák are thanked for their helpful comments and improvement of this manuscript. AP acknowledges grant no. N N307 105235 by the Polish Ministry of Science and Higher Education. JK acknowledges the Project “Development of the potential and educational offer of the University of Wrocław - the chance to enhance the competitiveness of the University” co-financed by the European Union under the European Social Fund.

REFERENCES

